Starting from:

$34.99

ISE529 Module 4 Homework Solution

ISE-529 Predictive Analytics
Linear Model Diagnosis
1) For this problem, you are to load the file "Problem 1 Dataset.csv" into a dataframe and perform model diagnosis on it to improve it. Use the steps identified in the slide in Module 4 at the end of the Model Diagnosis section (titled "Initial Steps for Model Diagnosis and Improvement"). Add comments to each step in your analysis describing your results and decisions and, at the end, write out the final equation of your model along with its R2
import pandas; import numpy; import seaborn;
from sklearn import metrics; from sklearn.linear_model import LinearRegression; from sklearn.model_selection import train_test_split; from sklearn.model_selection import cross_val_score; import statsmodels.api as sm; import statsmodels.stats.outliers_influence as smo;

# read csv
df1 = pandas.read_csv(filepath_or_buffer = "Problem 1 Dataset.csv");
# Step1: Assess and address multi-collinearity
# correlation coefficient print("correlation coefficient: "); print(df1.corr());
# VIF print("VIF: ");
X = sm.add_constant(df1);
print("X1 VIF: ", smo.variance_inflation_factor(exog = numpy.array(X), exog_idx = 1)); print("X2 VIF: ", smo.variance_inflation_factor(exog = numpy.array(X), exog_idx = 2)); print("X3 VIF: ", smo.variance_inflation_factor(exog = numpy.array(X), exog_idx = 3)); print("X4 VIF: ", smo.variance_inflation_factor(exog = numpy.array(X), exog_idx = 4)); print("X5 VIF: ", smo.variance_inflation_factor(exog = numpy.array(X), exog_idx = 5));
# the VIFs of X1, X3, and X4 are greater than 5-10, so I choose to drop X4 dp_df1 = pandas.DataFrame(
{
"X1": df1["X1"],
"X2": df1["X2"],
"X3": df1["X3"],
#"X4": df1["X4"],
"X5": df1["X5"],
"Y": df1["Y"]
}
)
print("correlation coefficient: "); print(dp_df1.corr()); print("VIF: ");
X = sm.add_constant(dp_df1);
print("X1 VIF: ", smo.variance_inflation_factor(exog = numpy.array(X), exog_idx = 1)); print("X2 VIF: ", smo.variance_inflation_factor(exog = numpy.array(X), exog_idx = 2)); print("X3 VIF: ", smo.variance_inflation_factor(exog = numpy.array(X), exog_idx = 3)); #print("X4 VIF: ", smo.variance_inflation_factor(exog = numpy.array(X), exog_idx = 4)); print("X5 VIF: ", smo.variance_inflation_factor(exog = numpy.array(X), exog_idx = 5));
In [270…
correlation coefficient:
X1 X2 X3 X4 X5 Y
X1 1.000000 0.057226 0.040811 0.567937 0.024574 0.214489 X2 0.057226 1.000000 -0.000972 0.025559 0.016519 -0.033164
X3 0.040811 -0.000972 1.000000 0.823847 0.002501 0.255026
X4 0.567937 0.025559 0.823847 1.000000 0.017179 0.320983
X5 0.024574 0.016519 0.002501 0.017179 1.000000 0.414648
Y 0.214489 -0.033164 0.255026 0.320983 0.414648 1.000000
VIF:
X1 VIF: 9.178852583219527
X2 VIF: 1.0076436679822616 X3 VIF: 19.30521248203398
X4 VIF: 28.34228682452905 X5 VIF: 1.233371415349463 correlation coefficient:
X1 X2 X3 X5 Y
X1 1.000000 0.057226 0.040811 0.024574 0.214489
X2 0.057226 1.000000 -0.000972 0.016519 -0.033164
X3 0.040811 -0.000972 1.000000 0.002501 0.255026 X5 0.024574 0.016519 0.002501 1.000000 0.414648
Y 0.214489 -0.033164 0.255026 0.414648 1.000000
VIF:
X1 VIF: 1.0593483699306214 X2 VIF: 1.0071214100460404
X3 VIF: 1.0852837718490556
X5 VIF: 1.3826213870578525

In [271… #Step2: Assess variable skew seaborn.histplot(dp_df1["X1"]);

In [272… seaborn.histplot(dp_df1["X2"]);

In [273… seaborn.histplot(dp_df1["X3"]);

In [274… seaborn.histplot(dp_df1["X5"]);
# there is no heavily skewed variables, so I choose to do nothing

#Step3: Build initial model and investigate standardized residuals plot X = dp_df1[["X1", "X2", "X3", "X5"]];
Y = dp_df1["Y"];

sk_dp_model1 = LinearRegression(fit_intercept = True); sk_dp_model1.fit(X, Y);

Y_pred_list = sk_dp_model1.predict(X); Y_pred_std = Y_pred_list.std();
resids = (Y - Y_pred_list.flatten()) / Y_pred_std;
In [275…
In [276… # standardized residual plot X1 vs Y
seaborn.scatterplot(x = dp_df1["X1"], y = resids).set(title = "standardized residual plot X1 vs Y");

In [277… # standardized residual plot X2 vs Y seaborn.scatterplot(x = dp_df1["X2"], y = resids).set(title = "standardized residual plot X2 vs Y");

In [278… # standardized residual plot X3 vs Y seaborn.scatterplot(x = dp_df1["X3"], y = resids).set(title = "standardized residual plot X3 vs Y");

In [279… # standardized residual plot X5 vs Y seaborn.scatterplot(x = dp_df1["X5"], y = resids).set(title = "standardized residual plot X5 vs Y");

In [280… # remove outliner print("outliners: "); print(dp_df1[resids > 20]); dp_nout_df1 = dp_df1.loc[dp_df1["Y"] < 800].copy(); print("after removing outliners: "); print(dp_nout_df1);
outliners:
X1 X2 X3 X5 Y 472 94.605503 20.018607 80.736526 96.953801 848.013947
676 81.727703 71.755720 94.084921 97.959787 877.622713
832 96.820144 28.712338 80.300004 99.614144 859.109883 867 93.504573 5.519625 82.900749 98.415985 825.471620 after removing outliners:
X1 X2 X3 X5 Y
0 41.702200 72.032449 0.011437 30.233257 1.988612
1 14.675589 9.233859 18.626021 34.556073 2.413024 2 39.676747 53.881673 41.919451 68.521950 16.190434
3 20.445225 87.811744 2.738759 67.046751 5.547465
4 41.730480 55.868983 14.038694 19.810149 2.309245 .. ... ... ... ... ... 995 80.014431 91.130835 51.314901 42.942203 12.813870
996 9.159480 27.367730 88.664781 24.594434 6.185463
997 62.118939 49.500740 9.437254 89.936853 24.844327
998 6.777083 68.070233 97.199814 70.937379 29.055264
999 32.590872 7.344017 57.973705 73.351702 20.618467
[996 rows x 5 columns]
#Step4: Assess nonlinear term or interaction effects
# lmplot X1 vs Y
seaborn.lmplot(data = dp_nout_df1, x = "X1", y = "Y").set(title = "lmplot X1 vs Y");
In [281…

# lmplot X2 vs Y
seaborn.lmplot(data = dp_nout_df1, x = "X2", y = "Y").set(title = "lmplot X2 vs Y");
In [282…

# lmplot X3 vs Y
seaborn.lmplot(data = dp_nout_df1, x = "X3", y = "Y").set(title = "lmplot X3 vs Y");
In [283…

In [284… # lmplot X5 vs Y seaborn.lmplot(data = dp_nout_df1, x = "X5", y = "Y").set(title = "lmplot X5 vs Y");

In [285… # X1, X3 and X5 are nonliear terms, so make them polynomial. Plus, there are # interactions among X1, X3, and X5, so add interaction terms. dp_nout_poly_df1 = dp_nout_df1;
dp_nout_poly_df1["X1^2"] = dp_nout_df1["X1"] ** 2; dp_nout_poly_df1["X3^2"] = dp_nout_df1["X3"] ** 2; dp_nout_poly_df1["X5^3"] = dp_nout_df1["X5"] ** 3; dp_nout_poly_df1["X1*X3"] = dp_nout_df1["X1"] * dp_nout_df1["X3"]; dp_nout_poly_df1["X1*X5"] = dp_nout_df1["X1"] * dp_nout_df1["X5"]; dp_nout_poly_df1["X3*X5"] = dp_nout_df1["X3"] * dp_nout_df1["X5"];
X = dp_nout_poly_df1[["X1", "X2", "X3", "X5", "X1^2", "X3^2", "X5^3", "X1*X3", "X1*X5", "X3*X5"]];
Y = dp_nout_poly_df1["Y"];

X = sm.add_constant(X);

all_x_model = sm.OLS(Y, X).fit(); print(all_x_model.summary());
In [286…
OLS Regression Results
============================================================================== Dep. Variable: Y R-squared: 0.901
Model: OLS Adj. R-squared: 0.900
Method: Least Squares F-statistic: 895.2
Df Residuals: 985 BIC: 7513.
Df Model: 10
Covariance Type: nonrobust ============================================================================== coef std err t P>|t| [0.025 0.975] ------------------------------------------------------------------------------ const 47.3370 2.307 20.521 0.000 42.810 51.864 X1 -0.4882 0.052 -9.473 0.000 -0.589 -0.387
X2 -0.0015 0.011 -0.135 0.893 -0.024 0.021
X3 -0.7989 0.053 -15.094 0.000 -0.903 -0.695 X5 -1.3089 0.040 -32.915 0.000 -1.387 -1.231
X1^2 0.0013 0.000 2.970 0.003 0.000 0.002
X3^2 0.0037 0.000 8.368 0.000 0.003 0.005
X5^3 0.0001 2.88e-06 38.522 0.000 0.000 0.000 X1*X3 0.0043 0.000 11.252 0.000 0.004 0.005
X1*X5 0.0072 0.000 18.108 0.000 0.006 0.008
X3*X5 0.0129 0.000 33.005 0.000 0.012 0.014
============================================================================== Omnibus: 415.829 Durbin-Watson: 2.080
Prob(Omnibus): 0.000 Jarque-Bera (JB): 4140.533
Skew: 1.634 Prob(JB): 0.00
Kurtosis: 12.439 Cond. No. 2.77e+06 ==============================================================================
Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The condition number is large, 2.77e+06. This might indicate that there are strong multicollinearity or other numerical problems.
#Step5: Assess update model and remove predictors to simplify model
# Becuase the p-value of X2 is hihger than 0.05, so drop this term
X = dp_nout_poly_df1[["X1", "X3", "X5", "X1^2", "X3^2", "X5^3", "X1*X3", "X1*X5", "X3*X5"]];
Y = dp_nout_poly_df1["Y"];

X = sm.add_constant(X);

all_x_model = sm.OLS(Y, X).fit(); print(all_x_model.summary());
In [287…
OLS Regression Results
==============================================================================
Dep. Variable: Y R-squared: 0.901
Model: OLS Adj. R-squared: 0.900 Method: Least Squares F-statistic: 995.6
Time: 22:57:14 Log-Likelihood: -3718.4 No. Observations: 996 AIC: 7457. Df Residuals: 986 BIC: 7506.
Df Model: 9
Covariance Type: nonrobust ============================================================================== coef std err t P>|t| [0.025 0.975] ------------------------------------------------------------------------------ const 47.2822 2.269 20.836 0.000 42.829 51.735 X1 -0.4883 0.051 -9.483 0.000 -0.589 -0.387 X3 -0.7993 0.053 -15.130 0.000 -0.903 -0.696
X5 -1.3092 0.040 -32.962 0.000 -1.387 -1.231
X1^2 0.0013 0.000 2.969 0.003 0.000 0.002
X3^2 0.0037 0.000 8.381 0.000 0.003 0.005 X5^3 0.0001 2.88e-06 38.550 0.000 0.000 0.000
X1*X3 0.0043 0.000 11.275 0.000 0.004 0.005
X1*X5 0.0072 0.000 18.125 0.000 0.006 0.008
X3*X5 0.0129 0.000 33.034 0.000 0.012 0.014 ==============================================================================
Omnibus: 415.755 Durbin-Watson: 2.079
Prob(Omnibus): 0.000 Jarque-Bera (JB): 4136.776
Skew: 1.634 Prob(JB): 0.00
Kurtosis: 12.434 Cond. No. 2.73e+06 ==============================================================================
Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The condition number is large, 2.73e+06. This might indicate that there are strong multicollinearity or other numerical problems.
Finally, the equation is: Y = 47.2822 + -0.4883 X1 + -0.7993 X3 + -1.3092 X5 + 0.0013 X1^2 + 0.0037 X3^2 + 0.0001 X5^3 + 0.0043 X1 X3 +
0.0072 X1 X5 + 0.0129 X3 X5 and the R^2 is: 0.901.
Validation Techniques
2) Read the file "Problem 2 Dataset.csv" into a dataframe
In [288… df2 = pandas.read_csv(filepath_or_buffer = "Problem 2 Dataset.csv"); print(df2);
X1 X2 X3 X4 Y
0 43.599490 2.592623 54.966248 43.532239 3756.657432
1 42.036780 33.033482 20.464863 61.927097 3396.840936
2 29.965467 26.682728 62.113383 52.914209 1604.019214 3 13.457995 51.357812 18.443987 78.533515 416.324724
4 85.397529 49.423684 84.656149 7.964548 17502.189699 .. ... ... ... ... ...
95 32.658830 22.028989 32.739418 96.436684 1457.637508 96 9.609070 16.218345 69.423912 13.976350 326.190445
97 26.662589 80.317587 30.061178 59.701655 1678.310673
98 57.281229 26.544347 24.873429 28.967549 7341.729547 99 87.594007 1.875815 9.163641 34.120996 17662.002604
[100 rows x 5 columns]
2a) Fit a linear regression model using the four predictors X1,X2,X3, and X4 to the response variable Y. Do not attempt to improve the model, just use the basic four predictors. Calculate and display mean squared error using the entire dataset for training and for validation.
In [289… X = df2[["X1", "X2", "X3", "X4"]];
Y = df2["Y"];

df2_model = LinearRegression().fit(X, Y);

Y_pred_list = df2_model.predict(X);

print("R^2: ", metrics.r2_score(Y, Y_pred_list)); print("Mean Squared Error: ", metrics.mean_squared_error(Y, Y_pred_list));
R^2: 0.9283737325868882
Mean Squared Error: 3514381.500658847
2B) Now, divide the dataset into a test and training partition using the sklear train_test_split function with an 80/20 split (80% training / 20% test) and calculate the test partition MSE for this model. Set random_state = 0 so that we all get the same answer.
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.2, random_state = 0);

df2_train_model = LinearRegression().fit(X_train, Y_train);
Y_pred_list = df2_train_model.predict(X_test);

print("R^2: ", metrics.r2_score(Y_test, Y_pred_list));
print("Mean Squared Error: ", metrics.mean_squared_error(Y_test, Y_pred_list));
In [290…
R^2: 0.9269953269897256
Mean Squared Error: 3971309.426078183
2c) Without using any additional libraries, perform a k-vold cross validation on the model with 5 folds. Display the resulting mean sequred error.
df2_mse_list = []; df2_sub_list = [];
for a in range(0, 100, 20):
df2_sub = df2.iloc[a : a + 20] df2_sub_list.append(df2_sub);
for a in range(len(df2_sub_list)): df2_sub_test = df2_sub_list[a];

df2_sub_train_list = []; for b in range(len(df2_sub_list)):
if a == b: continue;
df2_sub_train_list.append(df2_sub_list[b]);

df2_sub_train = pandas.concat(df2_sub_train_list);
X_sub_train = df2_sub_train[["X1", "X2", "X3", "X4"]]; Y_sub_train = df2_sub_train[["Y"]];
df2_sub_model = LinearRegression().fit(X_sub_train, Y_sub_train);
X_sub_test = df2_sub_test[["X1", "X2", "X3", "X4"]];
Y_sub_test = df2_sub_test[["Y"]];
Y_pred_list = df2_sub_model.predict(X_sub_test);

df2_mse_list.append(metrics.mean_squared_error(Y_sub_test, Y_pred_list));

print(df2_mse_list);
print(sum(df2_mse_list) / len(df2_mse_list));
In [291…
[3648210.9176183655, 3292576.0775635755, 4425548.743149514, 4082720.6744833044, 4277521.039715247]
3945315.4905060017
2d) Now, use the sklearn cross_val_score function to perform the same calculation and display the resulting mean squared error. Set shuffle=False so we all get the same answer. If you have done this correctly, your answers to 2c and 2d should be the same.
Documentation on the cross_val_score function can be found at https://scikitlearn.org/stable/modules/generated/sklearn.model_selection.cross_val_score.html
scores = cross_val_score(LinearRegression(), X, Y, cv = 5, scoring = "neg_mean_squared_error"); print(scores); print(-scores.mean());
In [292…
[-3648210.91761837 -3292576.07756358 -4425548.74314951 -4082720.6744833
-4277521.03971525]
3945315.4905060017

More products