$25
1. Compute the values for
4
a. 3
i=−1
5 1i
b. i=1 3
n
c. 3
i=1
n
d. 3
i=−3
n n
e. 2k + 2k k=0 k=5
n 2i n 2i
f. i=0 3 + i=−43
n
g. (i3 +2i2 −i +1)
i=1
n i
h. i=5 (−4i + 5)
k j
i. (i − j2 −2)
j=0 i=1
m j
j. j=1k=1(3C + k −3j +i)
j n k
k. l=−4 j=1(i −4)
i=1
2. Calculate the answer (do not use any calculators) (log3=1.5)
a. log4 x= 5 →x= ?
b. log3 y= 4 → y= ?
c. x= 72 → log7 x= ?
d. x= 32 →logx= ?
e. 2log5 + 4log6 − 27log35
f. 9log32 −25log54 −36log67 +8log86
210
g. log(45 83) −log(16−8) + log( 4 2 ) 3
h. log(32 643) −log( 21091282 3 ) 8
i. loglog16
j. log16log16 Compare your answer with part i.
k. log216 Compare your answer with parts j and i.
l. log2 log5 625−log3 log4 239 + log4 25 −
m. loglog8 log256+log5(32)4log7
n. log6 x= 5 → logx 6 = ?
o. logy x=10 → logx y = ?
p. log4 32−log82 4
q. log4 8+log9 27−log252125−log8316+log4 log256
3. Compute the derivative of
a. −5x3 +2x−1
b. 3x −2 x+x1/2 −6x−2/3 −5
c.
d. logx−x2 lnx+lnx4
e.
f. 3
4. Determine the limit of
a. lim
x⎯⎯→
b. lim(1+3)
x⎯⎯x→
c. lim3xlog x+2
x⎯⎯x→3+7x
d.
e.
f.
x ⎯⎯→
g. xx lim 2x
x⎯⎯→
h. lim xx x(2x)
x⎯⎯→
i. log xlog x
lim x1/5
x⎯⎯→
j. log4 x3 lim
x⎯⎯→
k. x+1 lim32xxln2x x⎯⎯→
3
l. lim logln x(2x)
x⎯⎯→
5. Compute the exact values for
n
a. (2x4 +5 x)dx
1 n
1 1
b. 1 (x4 −3x2 + x− x2 )dx
n
3
c. (+ lnx+ex)dx
1 n
d. xexdx
1 n
e. (xlnx− 4lnx)dx
1 n
f. xsin xdx
1
6. Use mathematical induction to prove that
7. Use mathematical induction to prove that