Starting from:

$25

18.06-PS7 Solved

Exercises on Cramer’s rule, inverse matrix, and volume 

Problem 20.1: (5.3 #8. Introduction to Linear Algebra: Strang) Suppose 

  

A  . 

Find its cofactor matrix C and multiply ACT to find det(A). 

          

                                                                       C                                   and ACT =     . 

If you change a1,3 = 4 to 100, why is det(A) unchanged? 

Problem 20.2: (5.3 #28.) Spherical coordinates ρ, φ, θ satisfy 

x = ρ sin φ cos θ, y = ρ sin φ sin θ and z = ρ cos φ. 

Find the three by three matrix of partial derivatives: 
  . 

Simplify its determinant to J = ρ2 sin φ. In spherical coordinates, 

dV = ρ2 sin φ dρ dφ dθ 

is the volume of an infinitesimal “coordinate box.” 

More products