Starting from:

$25

Quantum - Week 11 - Solved

QUANTUM ALGORITHMS


For a subgroup  define

 = 0 for all ,

where a · g is the dot product modulo 2 of g and g (regarded as Z2-vectors).

1.    Let  and . Define     and          .

(i) Prove that A = A0 ∪ A1 and ∅ = A0 ∩ A1.

(ii)                       Suppose that a ∈ A1. Prove that a + A0 = A1 and a + A1 = A0. Explain why this implies |A0| = |A1| if A1 6= ∅.

(iii)                    Prove that

(

                                              X            a·g                |A|       if a · g = 0 for all a ∈ A,

                                                    (−1)       =

                                                                           0        otherwise.

a∈A

2.    Using the previous question, prove the assertion on page 119 that

 

if and only if a = b ∈ D⊥ (the book uses E∗).

3.    We say that a subgroup  is maximal if

  and

  then .

Similarly,  is minimal if

•    {0} 6= A and

•    if {0} ≤ X ≤ A then {0} = X or X = A.

Prove that A is maximal if and only if A⊥ is minimal (use this in your solution to 13.1).

4.    In Simon’s algorithm, what would happen if instead of measuring the first block of qubits, we measured the second block of qubits? Calculate the density matrix and describe what distribution it represents.


More products