Starting from:

$30

Vv156 Homework 4 -Solved

Exercise 4.1 [Ste10, p. 385]

(a)  If f is continuous on [a,b], use −|f(x)| ≤ f(x) ≤ |f(x)| to show that

(b)  Use the result of prevous part to show that

Exercise 4.2 [Ste10, p. 395] The error function
erf 

is used in probability, statistics, and engineering. (a) (1pt) Show that

x2erf(x) satisfies the differential equation y′ = 2xy + 2/√π. (b) (1pt) Show that the function y = e

Exercise 4.3 [Ste10, p. 396] The sine integral function
Si 

is important in electrical engineering. [The integrand f(t) = (sint)/t is not defined when t = 0, but we know that its limit is 1 when t → 0. So we define f(0) = 1 and this makes f a continuous function everywhere.] (a) (1pt) Sketch the graph of Si.

(b) At what values of x does this function have local maximum values?

(c) Find the coordinates of the first inflection point to the right of the origin.

(d)Does this function have horizontal asymptotes?

(e) Solve the following equation (for x) correct to one decimal place:

Exercise 4.4 [Ste10, p. 396] Evaluate the limit by first recognizing the sum as a Riemann sum for a function defined on [0,1].

Page 1 of 2

Exercise 4.5 [Ste10, p. 396] If f is continuous and g and h are differentiable functions, find a formula for

d Z h(x)

         f(t)dt dx g(x)

Exercise 4.6 [Ste10, p. 396] Find a function f and a number a such that

                                                                                        for all x > 0.
Exercise 4.7 [Ste10, p. 414] Evaluate the indefinite and definite integral.

   ZZ √

                   tanx                                                                                                  22

      (i)       e                                               sec xdx(iii)                                                    cotxcsc xdx

   Z π/3

                                                            (vi)                                                     x4 sinxdx(viii)

−π/3


Exercise 4.8 [Ste10, p. 412] If f ∈ C0(R), show that

Exercise 4.9 [Ste10, p. 412] Evaluate the definite integral.

More products