Starting from:

$30

VE203-Worksheet 1 Solved

Exercise 1.1        Set

How many elements does each of these sets have where a and b are distinct elements? a) P(({{a,b,∅(,a,∅)){{a,ba},}}{{)a}}})

b)    P(P

c)    P

Exercise 1.2        Set

a)LetAA×=BB{×a,b,cBC.. },B = {x,y}, and C = {0,1}. Find

b)    C ×A ×× AB..

c)    C × B ×

d)    B ×

Exercise 1.3        Set

Let A,B, and C be sets. Show that a) (A − B) − C ⊆ A − C.

b) (A − C) ∩ (C − B) = ∅.

Exercise 1.4        Set

Show that if A is an infinite set, then whenever B is a set, A ∪ B is also an infinite set.

Exercise 1.5       Logic

Determine whether each of these conditional statements is true or false. a) If 1+1 = 3, then unicorns exist.

b)    If 1+1 = 3, then dogs can fly.

c)    If 1+1 = 2, then dogs can fly.

d)    If 2+2 = 4, then 1+2 = 3.

Exercise 1.6       Logic

Is the assertion ”This statement is false” a proposition?

Exercise 1.7       Logic

1.    Find the negation of ∀x∀y∃z A(x,y,z) ⇒ B(x,y,z)

2.    Show that (∃x(P(x) ⇒ Q(x))) ⇔ ((∀xP(x)) ⇒ (∃xQ(x))) is a tautology.

Exercise 1.8        Induction

Prove that for every positive integer n,

More products