Starting from:

$30

STATS202 HOMEWORK # 1 Solved

Problem 1

Chapter 2, Exercise 2 (p. 52).

Problem 2 

Chapter 2, Exercise 3 (p. 52).

Problem 3 

Chapter 2, Exercise 7 (p. 53).

Problem 4 (4 points)

Chapter 10, Exercise 1 (p. 413).

Problem 5 

Chapter 10, Exercise 2 (p. 413).

Problem 6

Chapter 10, Exercise 4 (p. 414).

Problem 7 

Chapter 10, Exercise 9 (p. 416).

Problem 8 

Chapter 3, Exercise 4 (p. 120).

Problem 9 
Chapter 3, Exercise 9 (p. 122). In parts (e) and (f), you need only try a few interactions and transformations.

1

Problem 10 

Chapter 3, Exercise 14 (p. 125).

Problem 11 
Let x1,...,xn be a fixed set of input points and , where  with  and

 . Prove that the MSE of a regression estimate fˆfit to (x1,y1),...,(xn,yn) for a random test point  decomposes into variance, square bias, and irreducible error components.

Hint: You can apply the bias-variance decomposition proved in class.

Problem 12 
Consider the regression through the origin model (i.e. with no intercept):

                                                                                                                                                                             (1)

(a)     (1 point) Find the least squares estimate for β.

(b)     (2 points) Assume  such that  and Var . Find the standard error of the estimate.

(c)      (2 points) Find conditions that guarantee that the estimator is consistent. n.b. An estimator βˆn of a parameter β is consistent if βˆ→p β, i.e. if the estimator converges to the parameter value in probability.

More products