Starting from:

$25

SIT292 - Assignment 2 - Solved

 LINEAR ALGEBRA 



1. Find all the cofactors Cij of

 

hence find adjA.

(ii) Verify that the adj A you obtained is correct by multiplying it with A. 20 marks

2.    Find all numbers α such that the vectors

             5               α 

             α              −α 

 3α  and  3α  are orthogonal. 

                            −1 

             1            

5                                          1

6                                          marks

3.    Use Gaussian elimination to reduce the following system of equations torow-echelon form, hence solve for x1,...,x4. Justify the correctness of your solution using matrix ranks

2x1 − 2x2 + 2x3 − 4x4 = 2 x1 + 4x2 + 8x3 + 2x4 = 5

−x1 + 9x2 + 3x3 − 4x4 = 5

10 marks

4.    Use Gaussian elimination to reduce the following system of equations torow-echelon form, hence solve for x1,...,x3. Justify the correctness of your solution using matrix ranks

3x2 + 11x3 = 6 x1 + x2 + 3x3 = 2

3x1 − 3x2 − 13x3 = −6

−x1 + 2x2 + 8x3 = 4

10 marks

5.    Use Gaussian-Jordan elimination to find the inverse of the matrix

 

10 marks

6.    Find eigenvalues and eigenvectors of the matrices A and B, where

  and  .

Hint: You can guess one eigenvalue for A,B and use long division of polynomials to find the others. 20 marks

7.    Diagonalise the matrix

  .

10 marks

8.    For the matrices

 

(a)     find the eigenvalues and eigenvectors

(b)    determine, if possible, a matrix P so that P−1AP = B. If impossible, provide an argument for that. (Hint: Use the method in the Study Guide p.113).

( 10 + 4 = 14 marks)

9.    For the following matrix

 

(a)     find the eigenvalues

(b)    for each eigenvalue determine the eigenvector(s)

(c)     determine a matrix P so that B = P−1AP is in triangular form, and verify that the determinant of B agrees with what you used in (a)

( 5 + 5 + 10 = 20 marks)

More products