Starting from:

$20

Nonlinear-Control-Homework 8 Solved

1.     Consider the one-form  ω = (1+2x1+x2)dx1 + x1dx2. Is it exact ? If yes, compute α(x1, x2) such that ω =dα(x1, x2). 

 

 

 

 

 

2.     Consider the one-form  ω = x1dx2 + x2dx3 + x3dx4   . Is it integrable ? Compute dω ∧ dω ∧ω. 

Do there exist two functions ϕ1and ϕ2 such that ω∈ span{dϕ1,dϕ2} ?  If yes, compute ϕ1and ϕ2 . 

 

 

 

 

 

3.     The nonholonomic integrator 

 

Check the accessibility of the following nonholonomic integrator: 

 x&1 =u1 x&2 =u2  

                                                             x&3 =x1u 2 −x2u1

Is it fully (means input-state) linearizable by static state feedback ? 

 

Is it fully linearizable by dynamic state feedback ? à Hint: try to find 2 output functions with relative degree 1 and such that the decoupling matrix has rank 1 only ! 

More products