Starting from:

$30

MTH371 Assignment II Solved


•    Use statistical software R for your codes.

•    Only basic built-in functions available in R are allowed.

•    In each question, show the simulations with relevant graphs.

1. Suppose the interarrival times of a renewal process have the geometric distribution with success probability p. Then the interarrival times are nonnegative integers, and sum of interarrival times is Sn = X1 + ... + Xn. Answer the following.

(a)    Simulate sum of interarrival times with p = 0.2.

(b)    Simulate Nt and estimate E(Nt) for various values of t. Use p = 0.2.

2. Let there be a discrete time Markov chain with the state space

S = {0,1,...,7}. The one step transition probability is given by

2/3

1/3
0

1/3
0

0
0

0
0

0
0

0
 
   0       1/3    1/3    1/3      0         0         0        0 



 0 0 1/3 1/3 1/3 0 0 0  P =  0 0 0 1/3 1/3 1/3 0 0 



                                0         0         0         0      1/3    1/3    1/3     0 



                                0         0         0         0         0      1/3    1/3  1/3



                                    0         0         0         0         0         0       2/3    1/3

It is given that when the process starts the MC was in state 0. Answer the following.

(a)    Simulate five times a 50 steps Markov chain. Construct a plot comparing time to the states of the process.

(b)    What will be P10, P20, P50. What do you observe.

2

More products