Starting from:

$30

MFDS - homework1 - Solved

Exercises
2.1        We consider (R\{−1},?), where

                                               a ? b := ab + a + b,             a,b ∈ R\{−1}                            (2.134)

a.    Show that (R\{−1},?) is an Abelian group.

b.    Solve

3 ? x ? x = 15

in the Abelian group (R\{−1},?), where ? is defined in (2.134).

2.2     Let n be in N\{0}. Let k,x be in Z. We define the congruence class k¯ of the integer k as the set

 .

We now define Z/nZ (sometimes written Zn) as the set of all congruence classes modulo n. Euclidean division implies that this set is a finite set containing n elements:

 

Zn = {0,1,...,n − 1}

 For all a,b ∈ Zn, we define

 a ⊕ b := a + b

a.     Show that (Zn,⊕) is a group. Is it Abelian?

b.     We now define another operation ⊗ for all a and b in Zn as

                                                                        a ⊗ b = a × b,                                            (2.135)

where a × b represents the usual multiplication in Z.

 Let n = 5. Draw the times table of the elements of Z5\{0} under ⊗, i.e., calculate the products a ⊗ b for all a and b in Z5\{0}.

Hence, show that Z5\{0} is closed under ⊗ and possesses a neutral

 

 element for ⊗. Display the inverse of all elements in Z5\{0} under ⊗. Conclude that (Z5\{0},⊗) is an Abelian group.

c.     Show that (Z8\{0},⊗) is not a group.

d.    We recall that the B´ezout theorem states that two integers a and b are relatively prime (i.e., gcd(a,b) = 1) if and only if there exist two integers

 

u and v such that au + bv = 1. Show that (Zn\{0},⊗) is a group if and only if n ∈ N\{0} is prime.

2.3        Consider the set G of 3 × 3 matrices defined as follows:

 

We define · as the standard matrix multiplication.

Is (G,·) a group? If yes, is it Abelian? Justify your answer.

2.4        Compute the following matrix products, if possible:

a.

                                  1    21     1    0

                                  4    50     1    1

                                     7    8      1    0    1

b.

 

c.

                               1    1    01     2    3

                               0    1    14     5    6

                                 1    0    1      7    8    9

d.

 

e.

 

2.5 Find the set S of all solutions in x of the following inhomogeneous linear systems Ax = b, where A and b are defined as follows:

a.

A  , b 

b.

A  , b 

2.6 Using Gaussian elimination, find all solutions of the inhomogeneous equation system Ax = b with

A  , b  .

2.7        Find all solutions in x   of the equation system Ax = 12x,

where



and P3i=1 xi = 1.

2.8        Determine the inverses of the following matrices if possible:

a.



b.

                                                                          1    0    1    0

                                                                 A = 0     1    1   0

                                                                          1    1    0    1

                                                                             1    1    1    0

2.9        Which of the following sets are subspaces of R3?

a.     A = {(λ,λ + µ3,λ − µ3) | λ,µ ∈ R}

b.    B = {(λ2,−λ2,0) | λ ∈ R}

c.     Let γ be in R.

C = {(ξ1,ξ2,ξ3) ∈ R3 | ξ1 − 2ξ2 + 3ξ3 = γ}

d.    D = {(ξ1,ξ2,ξ3) ∈ R3 | ξ2 ∈ Z}

2.10 Are the following sets of vectors linearly independent?

a.

x  , x  , x 

b.
 
 
1

2

 

x1 = 1 ,

 

0

0
1

1

 

x2 = 0 ,

 

1

1
1

0

  x3 = 0

 

1

1
2.11 Write



as linear combination of

x  , x  , x 

2.12 Consider two subspaces of R4:

−1  2  −3



 U1 = span[                                   = span[ 2 ,−2 , 6 ].

 2   0  −2

                                                                          1            0          −1

Determine a basis of U1 ∩ U2.

2.13 Consider two subspaces U1 and U2, where U1 is the solution space of the homogeneous equation system A1x = 0 and U2 is the solution space of the homogeneous equation system A2x = 0 with

                  1      0        1                    3     −3     0

       A1 = 1     −2      −1 , A2 = 1       2     3 .

                  2      1        3                    7     −5     2

                    1      0       1                         3     −1     2

a.    Determine the dimension of U1,U2.

b.    Determine bases of U1 and U2.

c.    Determine a basis of U1 ∩ U2.

2.14     Consider two subspaces U1 and U2, where U1 is spanned by the columns of A1 and U2 is spanned by the columns of A2 with

                                      1      0        1                   3

                           A1 = 1     −2      −1 , A2 = 1

                                      2      1        3                   7

                                        1      0       1                         3

a.     Determine the dimension of U1,U2

b.    Determine bases of U1 and U2

c.     Determine a basis of U1 ∩ U2
−3

2

−5

−1
0

3

2 .

2
2.15     Let F = {(x,y,z) ∈ R3 | x+y−z = 0} and G = {(a−b,a+b,a−3b) | a,b ∈ R}.

a.    Show that F and G are subspaces of R3.

b.    Calculate F ∩ G without resorting to any basis vector.

c.    Find one basis for F and one for G, calculate F∩G using the basis vectors previously found and check your result with the previous question.

2.16 Are the following mappings linear?

a. Let a,b ∈ R.

Φ : L1([a,b]) → R

 

where L1([a,b]) denotes the set of integrable functions on [a,b].

b.

Φ : C1 → C0

f 7→ Φ(f) = f0 ,

where for k > 1, Ck denotes the set of k times continuously differentiable functions, and C0 denotes the set of continuous functions.

c.

Φ : R → R

x 7→ Φ(x) = cos(x)

d.

Φ : R3 → R2

x x

e. Let θ be in [0,2π[ and

Φ : R2 → R2

x x

2.17 Consider the linear mapping

Φ : R3 → R4

x1              3x1 + 2x2 + x3  x1 + x2 + x3 

Φx2 =   x1 − 3x2      x3

2x1 + 3x2 + x3

 Find the transformation matrix AΦ.

Determine rk(AΦ).

Compute the kernel and image of Φ. What are dim(ker(Φ)) and dim(Im(Φ))?

2.18 Let E be a vector space. Let f and g be two automorphisms on E such that f ◦ g = idE (i.e., f ◦ g is the identity mapping idE). Show that ker(f) = ker(g ◦ f), Im(g) = Im(g ◦ f) and that ker(f) ∩ Im(g) = {0E}.

2.19 Consider an endomorphism Φ : R3 → R3 whose transformation matrix (with respect to the standard basis in R3) is

A  .

a.    Determine ker(Φ) and Im(Φ).

b.    Determine the transformation matrix A˜ Φ with respect to the basis

 ,

i.e., perform a basis change toward the new basis B.

2.20 Let us consider b  vectors of R2 expressed in the standard basis of R2 as



and let us define two ordered bases B = (b1,b2) and  of R2.

a.     Show that B and B0 are two bases of R2 and draw those basis vectors.

b.    Compute the matrix P1 that performs a basis change from B0 to B.

c.     We consider c1,c2,c3, three vectors of R3 defined in the standard basis

of R3 as



and we define C = (c1,c2,c3).

(i)         Show that C is a basis of R3, e.g., by using determinants (see Section 4.1).

(ii)       Let us call  the standard basis of R3. Determine the matrix P2 that performs the basis change from C to C0.

d.    We consider a homomorphism Φ : R2 −→ R3, such that

                        Φ(b1 + b2)         = c2 + c3

                        Φ(b1 − b2)      =       2c1 − c2 + 3c3

where B = (b1,b2) and C = (c1,c2,c3) are ordered bases of R2 and R3, respectively.

Determine the transformation matrix AΦ of Φ with respect to the ordered bases B and C.

e.    Determine A0, the transformation matrix of Φ with respect to the bases

B0 and C0.

f.      Let us consider the vector x ∈ R2 whose coordinates in B0 are [2,3]>.

In other words, x .

(i)         Calculate the coordinates of x in B.

(ii)       Based on that, compute the coordinates of Φ(x) expressed in C.

(iii)      Then, write Φ(x) in terms of  .

(iv)      Use the representation of x in B0 and the matrix A0 to find this result directly.

96                                                                                                                Analytic Geometry

Exercises
3.1                             Show that h·,·i defined for all x = [x1,x2]> ∈ R2 and y = [y1,y2]> ∈ R2 by

hx,yi := x1y1 − (x1y2 + x2y1) + 2(x2y2)

is an inner product.

3.2            Consider R2 with h·,·i defined for all x and y in R2 as

  .

=:A

Is h·,·i an inner product? 3.3    Compute the distance between

x  , y 

using

a.                 hx,yi := x>y

b.                 hx,yi := x>Ay , A :=  3.4    Compute the angle between

x  , y 

using

a.     hx,yi := x>y

b.    hx,yi := x>By , B := 

3.5                  Consider the Euclidean vector space R5 with the dot product. A subspace

U ⊆ R5 and x ∈ R5 are given by

−1

−9

 U = span[, x = −1 .

                                                                                                                          

 4 

1

a.    Determine the orthogonal projection πU(x) of x onto U

b.    Determine the distance d(x,U)

3.6        Consider R3 with the inner product

  .

Furthermore, we define e1,e2,e3 as the standard/canonical basis in R3.

More products