Starting from:

$30

MATH307-Individual Homework 11 Solved

1.   Let f : P3 →R be a mapping with f(a0 + a1x + a2x2 + a3x3) = a3 for all a0 + a1x + a2x2 + a3x3 in P3. Prove that f is a linear mapping.

2.   For each of the following matrices

Ñ0 0

A =                0 2

0 0
0 é

0             ,B =

−8
√ 

Ñ−1 0 0é Ñ 2                                  i

3        2 0          ,C =     0         2 − 3i

4        5 3          0         0
1  − 2ié

2  + i ,

1
              Ñ1     2

D =        2    4

3 −i
3 é

−i            ,E =

0
Ñ 1                                  1 + i 2 − ié Ñ1

1  − i 2         4         ,F =     0

2  + i 4         3         0
−2 3 4é

−2 3 5           ,

0        0 0
specify whether it is diagonal, upper-triangular, lower-triangular, symmetric or hermitian. Note one matrix might have more than one structures. For instance, a diagonal matrix is also upper-triangular. Moreover, a matrix is symmetric if A = AT. It applies to complex matrices as well.

3.   Prove that for two matrices A,B of the same size and α,β some coefficients, we have (αA + βB)T = αAT + βBT. Note, to prove two matrices are equal, it suffices to prove the ij-th entry of the two matrices are equal for all legal indices i,j.

4.   Prove that diagonal entries of Hermitian matrices have to be real valued.

More products