Starting from:

$30

MATH307-Individual Homework 10 Solved

1.   Problem 6 on page 56.

2.   Let V be the vector space of all real coefficient polynomials over the interval

[0,1], define an inner product . Prove that 1,x,x2 are linearly independent in V but not orthogonal.

3.   Given the vectors

Ñ0é Ñ1é Ñ1é

                                                         v1 =       1       ,v2 =        0       ,v3 =       1      ,

                                                                           1                       1                       0

find the projection of v1,v2 along v3 respectively, and then use them to find the projection of 2v1 + v2 along v3.

4.   Let V be the vector space of all real coefficient polynomials over [0,1] with degree no more than 1. One can prove that 1,x over [0,1] form a basis of

V . Let p,q ∈ V , define an inner product  . Use

Gram-Schmidt to find an orthonormal basis for V .

More products