Starting from:

$30

MATH307-Group Homework 8 Solved

Ñ3 0 1é

1.   Let A =  0 2 1 , determine whether A is nondefective, i.e., whether

0 0 2

the algebra multiplicity and the geometric multiplicity are identical for all eigenvalues.

2.   Let A be a Hermitian matrix, prove that eigenvectors corresponding to distinct eigenvalues of A are orthogonal. Note this is stronger than eigenvectors of distinct eigenvalues of a general matrix are linearly independent.

3.   Let A = UΣV ∗ be a singular value decomposition of A, prove that V (Σ∗Σ)V ∗ is an eigendecomposition of A∗A.

                                                                                                                                                           √         √ 

Ç 2 − 2å

4.   Use SVD to solve Ax = b. Let A = UΣV T with  

 Å2 0ã    Å0 1ã Çå  ,V         ,b        .

More products