Starting from:

$30

MATH307-Group Homework 11 Solved

Ñ0 1 0é

1.   Find the determinants of the following matrices: A =         1 0 0  (a per-

0 0 1

Ñ1 0 0é

            mutation elementary row operation matrix), B =          0 3 0          (a multipli-

0 0 1 Ñ 1 0 0é

            cation elementary row operation matrix), C =           −1 1 0          (an adding a

0        0 1

multiple of one row to another row elementary row operation matrix), D =

Ñ2 0 0é Ñ 1 4 −1é

1        −5 0           ,E =     −1 1 0           .

                     0 0 3                                2 0 1

2.   Let A be an invertible matrix, one can prove that |A| 6= 0, find the determinant of A−1 in terms of |A|.

3.   If |A| = 2,|B| = −1, find |A−1(BT)2|,|(BT)−1A3|.

4.   Suppose that Q is a n × n real orthonormal matrix, i.e., QQT = I. Find the possible values for |Q|.

More products