Starting from:

$35

Machine-Learning- HW11: Domain Adaptation Solved

Task Description - Domain Adaptation
● Imagine you want to do tasks related to the 3D environment, and then discover that…

○ 3D images are difficult to mark and therefore expensive.

○ Simulated images (such as simulated scene on GTA-5) are easy to label. 

Why not just train on simulated images?

 

Task Description - Domain Adaptation
Net (D)
Net (U)
Feat A
Output
????
????
       ● For Net, the input is “abnormal”, which makes Net doesn’t work properly.

                                                                              ???

Task Description - Domain Adaptation
Net (D)
Net (U)
Output
Output
     ● Therefore, one simple way to solve this problem is to make the distributions of FeatA and FeatB similar.

                               similar

Task Description - Domain Adaptation
●   Our task: Given real images (with labels) and drawing images (without labels), please use domain adaptation technique to make your network predict the drawing images correctly.

 

Dataset
●         
Label: 10 classes (numbered from 0 to 9), as following pictures discribed.

●        Training : 5000 (32, 32) RGB real images (with label). ● Testing : 100000 (28, 28) gray scale drawing images.


Data Format
●       Unzip real_or_drawing.zip, the data format is as below: ● real_or_drawing/

○ train_data/

■ 0/

●       0.bmp, 1.bmp … 499.bmp

■ 1/

●       500.bmp, 501.bmp … 999.bmp

■ … 9/

○ test_data/

■ 0/

●        00000.bmp

●        00001.bmp

●        … 99999.bmp

Data Format
●   You can simply use the following code to get dataloader after extracting the zip. (You can apply your own source/target transform function.)

source_dataset = ImageFolder('real_or_drawing/train_data', transform=source_transform) target_dataset = ImageFolder('real_or_drawing/test_data', transform=target_transform)
source_dataloader = DataLoader(source_dataset, batch_size=32, shuffle=True) target_dataloader = DataLoader(target_dataset, batch_size=32, shuffle=True) test_dataloader = DataLoader(target_dataset, batch_size=1

More products