Starting from:

$35

Machine-Learning- HW10: Adversarial Attack Solved

Task Description - Prerequisite 1/6
Those are methodologies which you should be familiar with firs

                    ○       Attack objective: Non-targeted attack

                    ○         Attack constraint: L-infinity norm and Parameter ε

                    ○       Attack algorithm: FGSM attack

                    ○         Attack schema: Black box attack (perform attack on proxy network)

                    ○        Benign images vs Adversarial images

Task Description - TODO 2/6
Fast Gradient Sign Method (FGSM)Choose any proxy network to attack the black box
Implement non-targeted FGSM from scratch
Any methods you like to attack the modelImplement any methods you prefer from scratch
Iterative Fast Gradient Sign Method (I-FGSM) --- medium baseline
Model ensemble attack --- strong/boss baseline
Task Description - FGSM 3/6
Fast Gradient Sign Method (FGSM)
Task Description - I-FGSM 4/6
Iterative Fast Gradient Sign Method (I-FGSM)
Task Description - Ensemble Attack 5/6
Choose a list of proxy models
Choose an attack algorithm (FGSM, I-FGSM, and so on)
Attack multiple proxy models at the same time
Delving into Transferable Adversarial Examples and Black-box Attacks
Query-Free Adversarial Transfer via Undertrained Surrogates
Task Description - Evaluation Metrics 6/6
Parameter ε is fixed as 8
Distance measurement: L-inf. norm
Model Accuracy is the only evaluation metrics
                                                   benign                                      adversarial (\eps = 8)     adversarial (\eps = 16)

Data Format 1/2
Download link: link ● Images:
                    ○      CIFAR-10 images

                    ○       (32 * 32 RGB images) * 200

                                    ■         airplane/airplane1.png, …, airplane/airplane20.png

                                    ■    …

                                    ■        truck/truck1.png, …, truck/truck20.png

○    10 classes (airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck) ○   20 images for each class

Data Format 2/2
In this homework, we can perform attack on pretrained models
Pytorchcv provides multiple models pretrained on CIFAR-10
A model list is provided here

More products