Starting from:

$30

Machine Learning-Homework 5 Solved

1.  

a.       Let ๐พ, ๐ฟ be two kernels (operating on the same space) and let ๐›ผ, ๐›ฝ be two positive scalars.  

Prove that ๐›ผ๐พ + ๐›ฝ๐ฟ is a kernel. 

b.      Provide (two different) examples of non-zero kernels ๐พ, ๐ฟ (operating on the same space), so that: 

i. ๐พ − ๐ฟ is a kernel. ii. ๐พ − ๐ฟ is not a kernel. 

Prove your answers. 

2.      Use Lagrange Multipliers to find the maximum and minimum values of the function subject to the given constraints: 

 Function: ๐‘“(๐‘ฅ, ๐‘ฆ, ๐‘ง) =       ๐‘ฅ0 + ๐‘ฆ0 + ๐‘ง0. Constraint: ๐‘”(๐‘ฅ, ๐‘ฆ, ๐‘ง) = 4233 + 6533 + 6733 = 1, where ๐›ผ >         ๐›ฝ > 0 

3.      Let ๐‘‹ = โ„=. Let 

 ๐ถ = ๐ป = {โ„Ž(๐‘Ž, ๐‘, ๐‘) = {(๐‘ฅ, ๐‘ฆ, ๐‘ง)  ๐‘Ž, |๐‘ฆ| ≤ ๐‘, |๐‘ง| . ๐‘Ž, ๐‘, ๐‘ ∈ โ„L} the 

set of all origin centered boxes. Describe a polynomial sample complexity algorithm ๐ฟ that learns ๐ถ using ๐ป. State the time complexity and the sample complexity of your suggested algorithm. Prove all your steps. 

More products