Starting from:

$25

MA502 - HW 5 - Solved

1.    Let X = C([0,1]) denote the space of continuous functions defined in the unit interval. Prove that the map .

2.    Consider a basis of R3 composed of the vectors

(1,0,−1), (1,1,1) and (2,2,0)

find its dual basis.

3.    Prove that the determinant, interpreted as a transformation

D : Rn2 →R with D(A) = determinant(A)

is linear in each of the rows. That is, if a row R of the matrix A is given by R = αR1 + βR2 with R1,R2 ∈Rn and α,β ∈R, then

D(A) = αD(A1) + βD(A2)

where Ai is the matrix constructed by taking A and replacing row R with tow Ri. This property is denoted as the determinant is a multilinear transformation row by row.

4.    Prove that the determinant map D : Rn2 →R defined above is alternating, i.e. if rows Ri and Rj in a matrix

                            R1                                                                                                                                                                                 R1

                             ...                                                                                          ...

                           Ri, !                                                                                            Rj, !

           A =        ...          are exchanged to obtain a new matrix A˜ =         ...

                            Rj                                                                                                                                                                                  Ri

                             ...                                                                                          ...

                            Rn                                                                                                                                                                                 Rn

then D(A) = −D(A˜).

5.    Prove that for 2×2 matrices the determinant is the only map D : R4 → R that is both multilinear as a function of the 2 rows and alternating, and that takes the value D(I) = 1 at the identity. The proof can be

1

done directly, using multilinearity and the alternating property. Just write any row in the matrix as a sum of vectors in the canonical basis.

Note This result, a characterization of the determinant, holds in any dimensions and can be used as an alternative (and equivalent) definition of the determinant.

More products