Starting from:

$30

MA232 Linear Algebra Homework 3 -Solved

Problem 1 
Construct a matrix whose nullspace consists of all combinations of 2
6
6
4
2
2
1
0
3
7
7

and 
2
6
6
4
3
1
0
1
3
7
7
5


x. 
Xs 
Xs 
×4 
Special solution I 
I⑤⑤Isetx=o 
pivot 
free 
S2=[§) 

Specislsdutiona 
set 
Xs=o 

#=L 
Sa 

[kg)Problem 2 [
Construct a matrix whose column space contains 2
4
1
1
5
3
5 and 2
4
0
3
13
5 and whose 
nullspace contains 2
4
1
1
2
3
5. 

A- [I § I] 
we must hare A. [If 

④ 
Hence 

÷÷÷÷ :
:÷ 


-

Thus 

a- I! ! I;]Problem 3 ] 
Let u1 = 2
4
1
0
0
3
5, u2 = 
2
4
1
1
0
3
5

u


2
4
1
1
13
5, u4 = 2
4
2
3
4
3
5. Show that u1, u2, u3 
are independent but 
u1, u
2
, u
3
, u

are dependent. 

Ci) 
Us 

Ua

uz 
are 
independent if 

f Lik 
u, 
y
)

has three pivots 

Indeed 

i: : : ni
: : :3 
Cii) A 3×4 matrix always has dependent columns 

[
Ur Us 
Us 
Ua

is 3×4 

hence 
U2

U2 Mesilla are 
dependent
.Problem 4 [
For which numbers c, d does the following matrix have rank 2? 
A = 2

12505 
00c22 
000d2 
3


Ant: : ⇒ ⇒ sheath

:&: 

Suppose 


to

then d must be 0 

otherwise the kurth 
column is a 
pivot 
as well 

hence the rank 
would be 3 

Since 


= o 

the fourth column is a 
pivot 

thus again 
we have rank 3 

So

we 
need to have C 
-
-


Now 

the fourth column 
is 

pivot and in order 
to not have the fifth column 
as 

pivot 
we 
must hare 01=2
.Problem 5 [] 
Find a basis for each of the four fundamental subspaces (column, null, row, 
left null) associated with the following matrix: 
A = 2

01234 
01246 
00012 3


free 
specialisation 
A- 
E
: :& I 

s. 
column space can.ci:p 


'

II:/ 
Nuelspace 
NCH 

LI:o) 

't;) 

Row 
space 
CAT 
-
-

[Ez) 
.to?no.1sLeftnueespaceNh-7oE:'qEInE!:ogEgif~ 
I :÷

÷: 
*.m*a⇒
.Problem 6 [
Suppose that S is spanned by s1 = 2
6
6
4
1
2
2
3
3
7
7
5
, s2 = 
2
6
6
4
1
3
3
2
3
7
7

. Find two vectors that 
span the orthogonal complement S?. (Hint: this is the same as solving 
Ax = 0 for some A) 

Let A 

[ kg kg] 

The left null space is 
orthogonal to 
the column space 

Hence 

we 
need to find NEAT

free 
at 

I: : : :3 rt: : : ⇒ 
Special solutions 
set!) 
sa 
-



Hence 
5- 

LE;) 

[!) 
>Problem 7 
Suppose P is the subspace of R4 that consists of vectors 2
6
6
4
x

x2 
x

x4
3
7
7

that satisfy 
x1 + x2 + x3 + x4 = 0. Find a basis for the perpendicular complement 
P ? 
of P. 

P is the null space of LI 


1) 
=

The orthogonal complement of Nat 
is the 
row 
space of A which is C CAT =L 
Ez)
>

More products