Starting from:

$30

MA232 Linear Algebra  Homework 2 -Solved

Problem 1  Which matrices E21, E31 produce zero in the (2, 1) re
spectively (3, 1) position of E21 · A respectively E31 · A for 
A = 2

2 10 
-2 0 1 
8 53 
3

Find the single matrix E that produces both zeros at once and calculate 
E · A. 

Es

-

[1%7] 
and Ese 
-

[7%7] 
Hence 
E- 

! E) 
EA 
-

[1%5]Problem 2  Use the Gauss elimination method in order to fifind the 
inverses of the following matrices: 
A = 2
6
6

0002 
0030 
0400 
5000 
3
7
7
5
, B = 
2
6
6

3200 
4300 
0065 
0076 
3
7
7


÷ : :: ::::oh ÷
.
÷:: ÷: ::l 

n
E

:::!÷÷
"
:
"
!I 

Hence A: 
too
..
÷
"
:

i: : ÷ ÷:÷÷÷H÷÷÷÷
.
i
"
÷:
÷ 

is:÷÷÷i÷÷÷÷÷s 

÷ : ÷:is::÷
.
÷
.


: ÷ :i

÷÷÷÷d

.
..
*
.
÷ :Problem 3 [ Factor the symmetric matrix A = 2

2 -1 0 
-1 2 -1 
0 -1 2 
3
5 as 
A = LDLT . 

E
: : :D.AE:# It 
÷

÷÷÷I=E÷÷d 
Hence 
E¥Eo¥¥.tt: 
-



Thus 


t.se 
:] % :&

.IE!:&] 


43Problem 4 For which vectors b = 2
4
b1
b
2
b
3
3

the following system of 
equations has a solution A = 2

111 
001 
001 
3
5 2
4
x

x

x
3
3


2
4
b
1
b
2
b3
3
5 ? 

A system Ax=b has a 
solution if and only if 
b belongs to the column space of A 

Hence

be L ) 


.Problem 5Reduce the following matrices to their row reduced 
echelon form: A = 2

12246 
12369 
00123 
3
5, B = 2

242 
044 
088 
3


E. : : : %I 
n
E
:: :::
%Eo ::::I 
n
E
: : :::I 
e: ¥ :s 
-
E

: :I 
n
E


-
:I

More products