Starting from:

$25

MA1023-Homework 6 Solved

1. 1) Sketch the region bounded by the polar curve r = −4cosθ and  .

2) Find the area of the above region.

In exercise 2-3, find the length of the polar curves.

2.                                                                                           √ 

                                                                             r = θ2                    0 ≤ θ ≤ 5

3.

                                                                       r = 2+2cos(θ)               0 ≤ θ ≤ π

4. Graph the points in the xyz-coordinate system satisfying the the given equations or inequalities.

1)   x2 +y2 = 4 and z = −2.

2)   x2 +y2 +z2 = 3 and z = 1.

5.   Find the component form and length of the vector with initial point P (1,−2,3) and terminal point Q(−5,2,2).

6.   Give u~ = h3,−2,1i, v~ = h2,−4,−3i, w~ = h−1,2,2i, find the magnitude of

(1)   u~ +v~ +w~;

(2)   2u~ −3v~ −5w~.

7.   Find a unit vector parallel to the sum of u~ = 2~i +4~j −5~k and v~ =~i +2~j +3~k.

8.   Determine the value of x so that u~ = h2,x,1i and v~ = h4,−2,−2i are perpendicular.

More products