Starting from:

$25

MA1023-Homework 2 Solved

In exercise 1, find a defining formula an = f (n) for the sequence.

1.

                                                                                                                   1      2    22         23 24

                                        1)−4,−3,−2,−1,0,···                          2) ,−       ,      ,−      ,      ,···

                                                                                                                   9      12 15       18 21

In exercise 2-6, determine the convergence or divergence of the sequences. If the sequence is convergent, find the limit.

2.
 
(1) an = 1+(−1)n
                        n+1          1

(2) an =         1−  

                        2n            n
3.

sin2(2n+1)

                                              (1) an =  2

n
cos(2n+3)

         (2) an =   n

2
4.

n+(−1)n+1

(1) an =  2n

5.
2n+1

            (2) an =           √

1−3 n
ln(2n+1)

                                               (1) an =        √

n
1

(2) an = cos(2π +  2) n
6.

(−4)n

(1) an =  n!
1

(2) an = 2+(  )2n

2
7.   Determine if the geometric series converges or diverges. If the series converges, find

the value.                                     ∞                                                ∞

                                                                       X (−1)n                                    X (−3)n

(1)  4n+1 (2)  2n n=1     n=1

8.   Find a formula for the n-th partial sume of the series and use it to determine if the series converges or diverges. If a series converges, find its value.

                                                  ∞ 3             3      !                         X∞ √              √          

X

 (1) n2 − (n+1)2            (2)        n+4−    n+3 n=1 n=1

More products