Starting from:

$20

ITE4005-Programming Assignment 3 Solved

1.  Perform clustering on a given data set by using DBSCAN. 

 

3. Requirements
The program must meet the following requirements:

l  Execution file name: clustering.exe n       Execute the program with four arguments: input data file name, n, Eps and MinPts

-               Three input data will be provided: ‘input1.txt’, ‘input2.txt’, ‘input3.txt

-               n: number of clusters for the corresponding input data

-               Eps: maximum radius of the neighborhood

-               MinPts: minimum number of points in an Eps-neighborhood of a given point

-               We suggest that you use the following parameters (n, Eps, MinPts) for each input data l     For ‘input1.txt’,  n=8,  Eps=15,  MinPts=22 l         For ‘input2.txt’,  n=5,  Eps=2,  MinPts=7 l          For ‘input3.txt’,  n=4,  Eps=5,  MinPts=5 n           Example:

  

-               Input data file name = ‘input1.txt’, n = 8, Eps = 15, MinPts = 22

l  File format for an input data

[object_id_1]\t[x_coordinate]\t[y_coordinate]\n 

[object_id_2]\t[x_coordinate]\t[y_coordinate]\n [object_id_3]\t[x_coordinate]\t[y_coordinate]\n [object_id_4]\t[x_coordinate]\t[y_coordinate]\n 

... 

                 n    Row: information of an object

-                    [object_id_i]: identifier of the ith object

-                    [x_coordinate], [y_coordinate]: the location of the corresponding object in the 2-dimensional space n        Example:

 

Figure 1. An example of an input data.

l    Output files n   You must print n output files for each input data

-          (Optional) If your algorithm finds m clusters for an input data and m is greater than n (n = the number of clusters given), you can remove (m-n) clusters based on the number of objects within each cluster. In order to remove (m-n) clusters, for example, you can select (m-n) clusters with the small sizes in ascending order

-          You can remove outlier. In other words, you don't need to include outlier in a specific cluster n          File format for the output of ‘input#.txt’ -           ‘input#_cluster_0.txt’

[object_id]\n

[object_id]\n

...

-          ‘input#_cluster_1.txt’

[object_id]\n

[object_id]\n

...

-          ‘input#_cluster_n-1.txt’

[object_id]\n

[object_id]\n

...

n        ‘output#_cluster_i.txt’ should contain all the ids belonging to cluster i that were obtained by using your algorithm n          Supposed to follow the naming scheme for the output file as above 

More products