Starting from:

$24.99

ISYE6501 Homework 6 Solution

INSTRUCTIONS

• The homework will be peer-graded. In analytics modeling, there are often lots of different approaches that work well, and I want you to see not just your own, but also others.
• The homework grading scale reflects the fact that the primary purpose of homework is learning:

Rating Meaning Point value (out of 100)
4 All correct (perhaps except a few details) with a deeper solution than expected 100
3 Most or all correct 90
2 Not correct, but a reasonable attempt 75
1 Not correct, insufficient effort 50
0 Not submitted 0

Question 13.2


Use the Arena software (PC users) or Python with SimPy (PC or Mac users) to build a simulation of the system, and then vary the number of ID/boarding-pass checkers and personal-check queues to determine how many are needed to keep average wait times below 15 minutes. [If you’re using SimPy, or if you have access to a non-student version of Arena, you can use λ1 = 50 to simulate a busier airport.]


Question 14.1

The breast cancer data set breast-cancer-wisconsin.data.txt from
http://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/ (description at http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Original%29 ) has missing values.
1. Use the mean/mode imputation method to impute values for the missing data.
2. Use regression to impute values for the missing data.
3. Use regression with perturbation to impute values for the missing data.
4. (Optional) Compare the results and quality of classification models (e.g., SVM, KNN) build using
(1) the data sets from questions 1,2,3;
(2) the data that remains after data points with missing values are removed; and (3) the data set when a binary variable is introduced to indicate missing values.


Question 15.1

Describe a situation or problem from your job, everyday life, current events, etc., for which optimization would be appropriate. What data would you need?


More products