Starting from:

$20

INT301- Week 10: Radial Basis Function Neural Networks Solved

Radial Basis Function Neural Networks 

The following exercise can be used to model an RBF network 

%Radial Basis Function Network  clear;close all; 

%Generate training data (input and target) p = [0:0.25:4];  t = sin(p*pi); 

%Define and train RBF Network  net = newrb(p,t);  plot(p,t,'*r');hold; 

%Generate test data  p1 = [0:0.1:4]; 

%Test network  y = sim(net,p1); 

plot(p1,y,'ob');  legend('Training','Test');  xlabel('input, p');  ylabel('target, t'); 

Part 1 

Revise demo.m in Week 6 lab with RBF network, to demonstrate the capability of RBF network to model the XOR logic gate.

Part 2 

Demonstrate the capability of an RBF to approximate the function  f(t) = sin(t)*exp(-t/20); 0 < t < 50

Implement K-means clustering algorithm for determining the centers. (Hint: you need to write the Matlab code for this part using formulae of RBF network from lecture notes, instead of directly using newrb and sim functions.)

More products