Starting from:

$35

ECE 509 Homework 3 Convex Optimization Solved

Homework 3
Convex Optimization

1.    Given symmetric matrices F0,F1,...,Fn,cast the following optimization problem as an

SDP

                                                   min       (Ax + b)TF(x)−1(Ax + b)

                                                     s.t.     F(x) ≻ 0

where F(x) = F0 + x1F1 + ··· + xnFn

2.   Given symmetric matrices W0 and W1, find the dual of the optimization min

                                                               min     xTW0X

                                                                s.t.      xTW1x ≤ 1.

3.    Use the duality idea to prove that the set  is empty if the set

!λ | λ∈Rm,λ≥ 0,ATλ = 0,bTλ < 0"

is nonempty (where A ∈Rm×n).

4.   Separating hyperplane between two polyhedra: formulate the following problem as an

LP (feasibility) problem. Find a separating hyperplane that strictly separates two polyhedra

                                              P1 = {x | Ax ≼ b},          P2 = {x | Cx ≼ d}

then find a vector a ∈Rn and a scalar γ such that

                                               aTx γ ∀x ∈ P1,            aTx < γ ∀x ∈ P2

Hence infx∈P2 aTx γ supx∈P2 aTx Use LP duality to simplify the infimum and supremum in these conditions.

1

More products