Starting from:

$35

ECE 509 Homework 2 Convex Optimization Solved

Homework 2
Convex Optimization



1. Given A ∈Rm×n and b ∈Rm, cast each of the following problems as LP

•    min "Ax − b"1      s.t. "x"∞ ≤ 1

•    min "x"1 s.t. "Ax − b"∞ ≤ 1

•    min "Ax − b"1 + "x"∞

2.   Consider the L4-norm approximation problem:

                                             min     

where A ∈Rm×n and b ∈Rm. Formulate this problem as a QCQP.

3.   Consider the LP problem:

                                                min     eTx + f

s. 

Find A0,··· ,An to formulate this problem as a SDP:

                                                 min     eTx + f

                                                  s.t.         A0 + A1x1 + ··· + Anxn ≼ 0

4.   Consider the optimization problem

                                                         min     f(x)     s.t.     x ≥ 0

where f is convex. Let x∗ be a point such that

 

Prove that x∗ is a solution of the optimization problem.

1

More products