Starting from:

$25

Math551 - final-exam - Solved

Practice Problems for Final Exam

• Attention: Textbook, notes, calculators and other electronic devices are NOT allowed during exams.

1)  Find a basis for the column space col(A) of the matrix

  .

Based on your finding, determine the rank of A.

2)  Find a basis for the null space ker(A) of the matrix

  .

Based on your finding, determine the rank of A.

3)  Find the eigenvalues of the matrix

  .

4)The eigenvalues of the matrix

 

are λ1 = −1 and λ2 = 2. Find the corresponding eigenspaces Eλ1(A) and Eλ2(A) and their dimensions. Based on your findings, determine whether A is diagonalizable. 5) Consider the following subspace in R4:

 1   0 

W = span.

                                                                                                        −2               3

Find an orthonormal basis for W.

6)  Consider the following set of vectors

 1   1   −1 

 2 ,  0 ,  1 

                                                                                  −1               1                1

Determine whether this set of vectors forms an orthogonal basis of R3. If it does, determine whether it also forms an orthonormal basis.

7)  Determine a,b,c and d such that the following matrix is an orthogonal matrix

  .

8)  Is the matrix

 

invertible? If yes find its inverse A−1. If no explain why. 9) In R4, consider the vectors

                                                     1                      1                        1                        4 

~v1 =  23 , ~v2 =  −32 , ~v3 =  −23 , w~ =  −3028 .

                                                        4                           −4                            −4                              0

Determine whether w~ belongs to the subspace V = span{~v1, ~v2, ~v2}.

10) Find all solutions of the linear system

 x1 + 2x2 + x3 + 12x5 = −2



x1 + 2x2 + 2x3− 2x4 + 4x5 = 1

 x1 + 2x2 + 5x3− 7x4− 18x5 = 4

More products