Starting from:

$34.99

ENEE3309 Assignment 1 Solution


Consider the periodic signal g(t), for which one period is shown in the figure below

where A=1 and π‘»πŸŽ = 𝟎. 𝟏 𝒔𝒆𝒄. This signal can be expanded in a trigonometric Fourier series as:
π’ˆ (𝒂𝒏 𝐜𝐨𝐬 π’πŽπŸŽπ’• + 𝒃𝒏 𝐬𝐒𝐧 π’πŽπŸŽπ’•)
𝒏=𝟏
Now, consider the approximate signal:
𝑲
π’ˆπ’‚(𝒕) = π’‚πŸŽ + ∑(𝒂𝒏 𝐜𝐨𝐬 π’πŽπŸŽπ’• + 𝒃𝒏 𝐬𝐒𝐧 π’πŽπŸŽπ’•)
𝒏=𝟏
1. Find π’‚πŸŽ, π’‚πŸ, π’‚πŸ, π’‚πŸ‘, π’ƒπŸ, π’ƒπŸ, 𝒂𝒏𝒅 π’ƒπŸ‘ (you can use matlab or any other code to find numerical values of the coefficients)
2. Use matlab to plot π’ˆ(𝒕) and π’ˆπ’‚(𝒕) for K = 3, on the same figure for one cycle of π’ˆ(𝒕).
3. The mean square error between π’ˆ(𝒕) and π’ˆπ’‚(𝒕) is defined as
𝟏 π‘»πŸŽ 𝟐
𝑴𝑺𝑬 = (∫ (π’ˆ(𝒕) − π’ˆπ’‚(𝒕)) 𝒅𝒕)
π‘»πŸŽ 𝟎
Find the mean square error for K=1, 2, and 3. Summarize your results in a table.
4. If π’ˆπ’‚(𝒕) (when K = 3) is multiplied by the carrier 𝒄(𝒕) = 𝟏𝟎 𝐜𝐨𝐬 πŸπ…(𝟐𝟎𝟎)𝒕 followed by an ideal bandpass filter to generate the single sideband signal 𝒔(𝒕), find s(t) and its spectrum.

More products