Starting from:

$25

EE5175-Lab 3 Solved

1.   Space-invariant blurring Perform Gaussian blurring on Mandrill.pgm with standard deviation σ. Assume space-invariant blur and a kernel of size d6σ+1e×d6σ+1e. Observe the outputs for these values of σ: 1.6, 1.2, 1.0, 0.6, 0.3 and 0.0.

2.   Space-variant blurring Now assume the blur to be space-variant, i.e. the standard deviation varies for each pixel. Consider the distribution of σ to be

 ´

                                                              σ(m,n)=Aexp,                               0≤m,n≤N−1

B

with

µN N¶

                                            σ ,             =2.0 and σ(0,0)=0.01,

                                             2    2

where N×N is size of the image and pixel indices are in the range [0,N−1]×[0,N−1]. Find A and B, and create the matrix σ. Perform Gaussian blurring on Globe.pgm using the values of σ(m,n).

3.   Blur Nautilus.pgm using

(a)   space-invariant blur code of part 1 with σ=1.0, and

(b)   space-variant blur code of part 2 with σ(m,n)=1.0 for 0≤m,n≤N−1.

Verify that the blurred images of the above two steps are same.

More products