Starting from:

$29.99

EE301 Homework 3 Solution



1) Problem 1: Let ๐‘ฅ[๐‘›] = ๐›ฟ[๐‘›] + 3๐›ฟ[๐‘› − 1] + ๐›ฟ[๐‘› − 2].
a) Plot ๐‘ฅ[๐‘›] and its periodic extension, ๐‘ฅฬƒ[๐‘›], for ๐‘ = 3 .
๐‘ฅฬƒ๐‘
๐‘˜=−∞
b) Find the Discrete-time Fourier Series (DTFS) coefficients, ๐‘‹ฬƒ3[๐‘˜], of ๐‘ฅฬƒ3[๐‘›]. Write the DTFS representation of ๐‘ฅฬƒ3[๐‘›].
c) Find the Discrete-time Fourier Series (DFS) coefficients for N=5, ๐‘‹ฬƒ5[๐‘˜], of ๐‘ฅฬƒ5[๐‘›]. Write the DTFS representation of ๐‘ฅฬƒ5[๐‘›].
d) Find the DTFT, ๐‘‹(๐‘’๐‘—๏—), of ๐‘ฅ[๐‘›]. Plot its magnitude and phase.
3[๐‘˜] = ๐‘‹(๐‘’๐‘—๏—)|๏—=๐‘˜2๐œ‹ and ๐‘‹ฬƒ5[๐‘˜] = ๐‘‹(๐‘’๐‘—๏—)|๏—=๐‘˜2๐œ‹, i.e., uniformly spaced samples e) Verify that ๐‘‹ฬƒ
3 5
of DTFT of ๐‘ฅ[๐‘›]. Show these samples on the magnitude and phase plot of ๐‘‹(๐‘’๐‘—๏—).

Problem 2: The following difference equation for a LTI system is given, y๏›n๏− y๏›n−1๏=x๏›n๏−x๏›n−1๏+x๏›n−2๏
a) Find the frequency response, H(ej๏—).
b) Plot the magnitude, |H(ej๏—)| and phase response, ๏ƒH(ej๏—), for H(ej๏—) in MATLAB using freqz command.
c) Let x๏›n๏= cos๏ƒฆ๏ƒง๏ฐ n๏ƒถ๏ƒท+sin๏ƒฆ๏ƒง๏ฐn+๏ฐ๏ƒถ๏ƒท be the system input. Find the output y[n].
๏ƒจ 3 ๏ƒธ ๏ƒจ 2 4 ๏ƒธ
d) Prove that H(ej๏—)= H*(ej(2π - ๏—)).

Problem 3:
For the given system, Xc(jω) and H(ej๏—), sketch and label the Fourier Transform of yc(t) for the following cases
a) 1/T1=1/T2=104 b) 1/T1=1/T2= 2.104 c) 1/T1=2.104, 1/T2= 104 d) 1/T1= 104, 1/T2=2.104
Xc(jω)
xc(t) c


ω (rad/s)

Problem 4:
Assume the following system is provided:


Determine the maximum value for T and appropriate H(ej๏—) of the DT system, such that Yr(jω)=Yc(jω).

More products