$29.99
1) Problem 1: Let π₯[π] = πΏ[π] + 3πΏ[π − 1] + πΏ[π − 2].
a) Plot π₯[π] and its periodic extension, π₯Μ[π], for π = 3 .
π₯Μπ
π=−∞
b) Find the Discrete-time Fourier Series (DTFS) coefficients, πΜ3[π], of π₯Μ3[π]. Write the DTFS representation of π₯Μ3[π].
c) Find the Discrete-time Fourier Series (DFS) coefficients for N=5, πΜ5[π], of π₯Μ5[π]. Write the DTFS representation of π₯Μ5[π].
d) Find the DTFT, π(ππο), of π₯[π]. Plot its magnitude and phase.
3[π] = π(ππο)|ο=π2π and πΜ5[π] = π(ππο)|ο=π2π, i.e., uniformly spaced samples e) Verify that πΜ
3 5
of DTFT of π₯[π]. Show these samples on the magnitude and phase plot of π(ππο).
Problem 2: The following difference equation for a LTI system is given, yοnο− yοn−1ο=xοnο−xοn−1ο+xοn−2ο
a) Find the frequency response, H(ejο).
b) Plot the magnitude, |H(ejο)| and phase response, οH(ejο), for H(ejο) in MATLAB using freqz command.
c) Let xοnο= cosο¦ο§ο° nοΆο·+sinο¦ο§ο°n+ο°οΆο· be the system input. Find the output y[n].
ο¨ 3 οΈ ο¨ 2 4 οΈ
d) Prove that H(ejο)= H*(ej(2π - ο)).
Problem 3:
For the given system, Xc(jω) and H(ejο), sketch and label the Fourier Transform of yc(t) for the following cases
a) 1/T1=1/T2=104 b) 1/T1=1/T2= 2.104 c) 1/T1=2.104, 1/T2= 104 d) 1/T1= 104, 1/T2=2.104
Xc(jω)
xc(t) c
ω (rad/s)
Problem 4:
Assume the following system is provided:
Determine the maximum value for T and appropriate H(ejο) of the DT system, such that Yr(jω)=Yc(jω).