Starting from:

$30

ECE472-Assignment 1 Solved

Problem Statement          Consider a set of scalars {x1,x2,...,xN} drawn from U(0,1) 012  and a corresponding set {y1,y2,...,yN} where:

013

014

015

016

017

018

019

020

021

022
yi = sin(2πxi)+ ϵi

and ϵi is drawn from N(0,σnoise). Given the following functional form:

yˆi = ∑wjϕj (xi | µj,σj)+ b M

j=1

with:
(1)

(2)
 023

024(3)

025

026

027
find estimates ˆb, {µˆj}, {σˆj}, and {wˆj} that minimize the loss function:
 028

029(4)

030

031             for all (xi,yi) pairs. Estimates for the parameters must be found using stochastic

032 gradient descent. A framework that supports automatic differentiation must be

033

034                used. Set N = 50,σnoise = 0.1. Select M as appropriate. Produce two plots. First,

035            show the data-points, a noiseless sinewave, and the manifold produced by the

036

regression model. Second, show each of the M basis functions. Plots must be of

037

038            suitable visual quality.

039

 

056                                                                                  −4             −2                          0                            2                            4                            −4                          −2                 0                            2                            4 x                         x

057

058             Figure 1: Example plots for models with equally spaced sigmoid and gaussian basis functions.

059

More products