Starting from:

$30

ECE 4332 Project 3 Solved

1.      Generate the data set D as follows:

a.       𝐷𝐷 = 100

b.      𝑁𝑁 = 25

c.       𝑋𝑋 contains samples from a uniform distribution U(0,1).

d.      𝑑𝑑 = sin(2πœ‹πœ‹π‘‹π‘‹) + πœ€πœ€, where πœ€πœ€ contains samples from a Gaussian distribution N(0, 𝜎𝜎 =0.3).

2.      Select a set of permissible values for the regularization parameter πœ†πœ†.

3.      For each value of πœ†πœ†, use the method of “linear regression with non-linear models” to fit Gaussian basis functions to each of the datasets. Use 𝑠𝑠 = 0.1.

4.      Produce the plot as shown below, where

𝐷𝐷

1

𝑓𝑓(Μ… π‘₯π‘₯) = 𝑓𝑓(𝑑𝑑)(π‘₯π‘₯)

𝐷𝐷

𝑑𝑑=1

𝑁𝑁

1

                                                            (𝑏𝑏𝑏𝑏𝑏𝑏𝑠𝑠)2 = 𝑓𝑓π‘₯π‘₯Μ… (𝑛𝑛)− β„Žπ‘₯π‘₯(𝑛𝑛)2

𝑁𝑁

𝑛𝑛=1

                                                                                     𝑁𝑁            𝐷𝐷

                                                                                1        1

                                      𝑣𝑣𝑏𝑏𝑣𝑣𝑏𝑏𝑏𝑏𝑣𝑣𝑣𝑣𝑣𝑣 =                            𝑓𝑓(𝑑𝑑)π‘₯π‘₯(𝑛𝑛)− 𝑓𝑓π‘₯π‘₯Μ…   (𝑛𝑛)2

𝑁𝑁       𝐷𝐷 𝑛𝑛=1 𝑑𝑑=1

5. The test error curve is the average error for a test data set of 1000 points.

 

 

More products