Starting from:

$25

Dynamical -Homework #9 - Solved

1              Questions from Silva
1.1      Section 4.3 Problem 1.

Suppose s1 and s2 are simple function with s1 = s2 a.e. Let E be the set of measure 0 where s1 6= s2. Observe that,

n

Z

s1dµ = Xaiµ(Ai)
i=1

n

= Xaiµ(Ai \ E) + aµ(E)
i=1

n

= Xaiµ(Ai \ E) + a · 0

i=1

n

= Xaiµ(Ai \ E)
i=1

and,

m

Z

s2dµ = Xbiµ(Bi)
i=1 m

= Xbiµ(Bi \ E) + bµ(E)
i=1 m

= Xbiµ(Bi \ E) + a · 0

i=1 m

= Xbiµ(Bi \ E)
i=1

But observe that ∪ni=1Ai \E  Bi \E = X \E and, by definition, s1 = s2 everywhere on this set. Since we are integrating the same function on the same set, we must have that R s1dµ = R s2dµ.

Problem 3.

Suppose s is a nonnegative simple function. Suppose RX sdµ = 0. Then,

n

Z

sdµ = Xαiµ(Ei)
                                                                                    x                 i=1

= 0

Since s ≥ 0, we have that αi ≥ 0 for all i. Moreover, we have that µ(Ei) ≥ 0 for all i by properties of measure. Thus, in order for this sum to equal 0, we must have that αiµ(Ei) = 0 for all i. Note that if µ(Ei) = 0 for all i, then µ(X) = 0. Hence, even if s > 0 on all of X, it is vacuously true that s = 0 a.e. since the whole space is measure 0. So let us assume that at least one Ei has positive measure. If αiµ(Ei) > 0 for this i, then Pni=1 αiµ(Ei) > 0, a contradiction. Hence, for every set Ei of positive measure, we must have that s = 0. Thus, s = 0 a.e. in X.

Now let us assume s = 0 a.e. in X. Then we have that there is a set E with µ(E) = 0 such that s > 0 on E and s = 0 on X \ E. Since s = 0 a.e. and 0 is a simple function (with every coefficient αi set to 0), we can apply Exercise 1 and state that we must have,

                                                                                Z                    Z

                                                                                        sdµ =       0dµ
X                    X n

= X0 · µ(Ai)

i=1

= 0

as required.

1.2        Section 4.4

Problem 2.

Let f be a nonnegative measurable function and let A be a measurable set. Suppose RA f dµ = 0. Then,

                                         Z                                 Z

                                                  f dµ = sup{            s dµ : s is simple and 0 ≤ s ≤ f} = 0

                                            A                                 A

. Since the supremum of this set is 0 and every nonnegative simple function has a nonnegative integral, then for any s in the above set, we must have that,

n

Z

s dµ = Xaiµ(Ai)
                                                                                   A                    i=1

= 0

By Section 4.3 Problem 3, we thus have that s = 0 a.e. in A. Since s was arbitrary, this holds for every s in the above set. Let us suppose that it is not the case that f = 0 a.e. That is, there is a set of positive measure where f > 0. Then there would be a simple function s with 0 ≤ s ≤ f such that s > 0 on this set as well and hence it would not be the case that s = 0 a.e., a contradiction. Hence, we must have that f = 0 a.e.

Now suppose that f = 0 a.e. Then there is a set E of measure 0 such that f = 0 everywhere on A\E. Fix a simple function s on A such that 0 ≤ s ≤ f. For this to hold, we must have that s = 0 on A \ E. We can have that 0 < s ≤ f on E, but note that µ(E) = 0.

Thus,

n

Z

s = Xai µ(Ai)
                                                                  A            i=1

                                                                                 n                                       m

= Xai µ(Ai \ E) + Xei µ(Ei)
i=1             i=1 n

= Xai µ(Ai \ E)
i=1

= 0

where ∪Ei = E (note since Ei ⊂ E we have µ(Ei) ≤ µ(E) and since measure is nonneg-

ative and µ = 0, we get µ(Ei) = 0).

Since s was arbitrary on A with the property 0 ≤ s ≤ f, this must hold for every element of the set {RA s dµ : s is simple and 0 ≤ s ≤ f}. Thus, RA s = 0 for every element s in the set and so,

                                              Z                                 Z

                                                       f dµ = sup{           s dµ : s is simple and 0 ≤ s ≤ f}

                                                 A                                 A

= 0

as required.

Problem 3.

Suppose f is a nonnegative measurable function and let A,B be measurable sets with A ⊂ B. We have that

                                                  Z                         Z

                                                          f = sup{           s dµ : s is simple and 0 ≤ s ≤ f}

                                                     A                         A

and

                                                  Z                         Z

                                                          f = sup{           s dµ : s is simple and 0 ≤ s ≤ f}

                                                    B                         B

Observe that for every s in the set {RB s dµ : s is simple and 0 ≤ s ≤ f}, we can write,

n

Z

s = Xbnµ(Bi)
                                                                   B            i=1

                                                                                   n                                     m

= Xbiµ(Bi \ A) + Xaiµ(Ai)
                                                                                  i=1                                  i=1

                                                                                 Z                  Z

                                                                            =           s +       s
                                                                                    B\A              A

where ∪Ai = A. Since the integral of any nonnegative simple function is nonnegative, we must have from the above that RB s ≥ RA s. Observe that every element of {RA s dµ : s is simple and 0 ≤ s ≤ f} can be extended to a simple function on B by taking s = 0 on B \ A, so we have {RA s dµ : s is simple and 0 ≤ s ≤ f} ⊂ {RB s dµ : s is simple and 0 ≤ s ≤ f}. Moreover, as we have shown above, if RB\A > 0, then RB s > RA s. Thus, we must have that,

                   Z                                                                                                 Z

         sup{           s dµ : s is simple and 0 ≤ s ≤ f} ≤ sup{               s dµ : s is simple and 0 ≤ s ≤ f}

A         B and so,

                                                                                           Z               Z

                                                                                                   f ≤        f
                                                                                              A               B

as required.

Problem 4.

Let f be a nonnegative measurable function and {Aj} be a sequence of disjoint measurable sets. We have,

                                          Z                                     Z

                                                       f dµ = sup{              s dµ : s is simple and 0 ≤ s ≤ f}

                                              tAj                                                     tAj

Fix s in the above set. Then,

n

Z

s = Xbi µ(Bi) tAj i=1
for some sets Bi such that ∪Bi = tAj. However, we could alternatively divide up tAj so that each subset in our sum corresponds to only one Aj. That is, we can write,

n

Z

s = XXaji µ(Aji) tAj                    j=1 i=1

                                                                             n                                  n

= Xa1i µ(A1i) + Xa2i µ(A2i) + ···

                                                                            i=1                               i=1

                                                                           Z               Z

                                                                      =         s +         s + ···

                                                                              A1                     A2

Now note that RAi s is contained in the above set for any i because we can set RAj s = 0 for any j 6= i and maintain its status as a simple function. Hence,

                                                                             Z                                 Z
X

f dµ = f dµ tAi                     j Aj Problem 5.

Consider



                                                                                             1[0,1/2](x)      n odd

fn(x) =

                                                                                             1[1/2,1](x)      n even

Observe that liminfn→∞ fn(x) = 0. Thus,

                                                                           Z                                           Z
                                                                                   liminf fn(x)dµ =        0dµ

n→∞

= 0

Now note that R fndµ =   for all n. Thus,

 Z

                                                                            liminf      fndµ

                                                                              n→∞                                n→∞ 2

 

Thus, we have that R liminfn→∞ fn(x)dµ < liminfn→∞R fndµ as required.

More products