Starting from:

$25

Dynamical - Quizzes - Solved

Let

x − ai T(x) =  ai+1 − ai

with x ∈ [ai,ai+1). T : J → J where J = [0,1). And 0 = a0 < a1 < ··· < ak = 1. We want to show that T is a measure preserving transformation of (J,L(J),λ) regardless of choice of {ai}.

We have that T−1(x) = x(ai+1−ai)+ai. Let C be the collection of left-closed, right-open dyadic intervals in [0,1). We saw in Section 2.7 that C is a sufficient semi-ring. For I we write I = [k/2i,(k + 1)/2i) for integers k,i with i ≥ 0 and k ∈ {0,...,2i − 1}. Observe that λ(I) = 1/2i for all I ∈ C. Assume for a fixed I that I ⊂ [ai,ai+1) for some i ∈ {0,...k}.

Then,

                                                                    "                                                                                           !

                                                 −1                   k                              k + 1

                                             T      (I) =      2 i(ai+1 − ai) + ai,   i   (ai+1 − ai) + ai

2

T−1(I) is an interval for any I and is hence a measurable set. Moreover,

                                                  −1                  k + 1                                  k

                                         λ(T       (I)) =        i               (ai+1 − ai) + ai − ( i(ai+1 − ai) + ai)

                                                                          2                                     2

                                                                        k + 1              k + 1          k              k

                                                                  =     2i      ai+1 −      2i         ai − 2iai+1 + 2iai

(k + 1)(ai+1 − ai) − k(ai+1 − ai)

=

2i

((k + 1) − k)(ai+1 − ai)

 =

=

2i

Observe that T maps some values onto I for each T defined on the intervals [ai,ai+1). Hence, there will be k such intervals resulting from I with the same length as the above when applying T−1.

1

If we add this up over all intervals [ai,ai+1), we get,

                                                                                   ak − a0          1

 = = λ(I) 2i         2i

as required. Hence, we can apply Theorem 3.4.1 in order to assert that T is then a measure-preserving transformation.


More products