Starting from:

$25

CSE222-Homework 1 Solved

1.     Given any two functions f(n) and g(n), show that f(n) + g(n) = Θ(max{f(n),g(n)}))

(10P).P).).

2.     Show that f(n) =n2+ 2n+ 1 is Θ(n2) using induction. ( If you use l’Hopital, you will lose points.)(5P).).

3.     P).rove the functions below (40P).P).).

a)  If f(n) = 10P). log(n) + 5 (log(n))3 + 7n + 3n2 + 6n3, then f(n) = O(n3) (5P).) b)  1 = O(n) (5P).)

c)          n = O(n2) (5P).)

d)         log(n) = O(n),           2 n + 1 = O(n) (5P).)

e)          n = Ω(1) (5P).)

f)           n2 = Ω(n) (5P).)

g)          n2 = Ω(n log(n)) (5P).)

h)         2 n + 1 = Θ(n) (5P).)

4.     Sort the following functions from fastest to slowest with respect to their growth rate. Do not use l’Hopital! P).rove all of them using induction (20P).P).).

n!,  nk+n , n,  logn,  n(logn),  e7,  20P).19,  -7n+m,  n4,  10P).0P).*n 

*k and m are constants.

5.     Explain the time complexity of the code snippets below (10P).P).).

a-)System.out.println = SOP void method4(int [] arr) { for(int i = 0; i < arr.length; i++) { for(int k = arr.length - 1; k 0; k = k / 3 ) { SOP(arr[i]); 



} }

     b-) 

void method3(int [] arr) 

{ for(int i = 0; i < arr.length; i++) 

{ method1(arr); 

               method2(arr); 



}

 

void method1(int [] arr) 

{ int n = arr.length; 

for(int i = n - 1 ; i = 0; i = i - 3) 



SOP (arr[i]); 



}

6. Calculate the time complexity of the following recurrence functions (Use the master theorem)(10P)

•       T(n) = T(n/7) + n4

•       T(n) = T(n/99) + n75

•       T(n) = 23T(n/12) + 6

7. Write mergesort with pseudo-code and analyze the algorithm’s worst case, best case and average case using asymptotic notations(15P).

More products