Starting from:

$25

CSC30100 - Project03 - Solved

a

Calculate the Taylor polynomials centered at 0,

n f (k) (0) k     Tn (x)=∑k=0  k! (x) ,

for  f = cos(x) for the following 4 values of ,x

                     1    2    3    4 

 x∈  ,     ,     ,      which is equivalent to 10 10 10 10 j x =     , for j =1,2,3,4.

10

For each value of , j find the smallest integer  such thatn

                             j          j        −12

    Tn    −cos     <10   .

                        10       10 

Calculate the "exact" value using np.cos(x).  Present your results in a table and discuss them.   How do your errors compare to the error bounds for Taylor polynomials that we discussed in class? Remember that the error for a Taylor polynomial is given by its remainder term

(n+1)

                                                                                                                 f       (c)        n+1

     Rn (x)= f x( )−Tn (x)=    (x−a)

(n+1 !)



 

More products