Starting from:

$25

CS549-Homework 8 Solved

Smallest Optical Flow (4 pts): What velocity 𝑉⃗ 𝑀𝐼𝑁 that satisfies the Optical Flow
Constraint Equation 𝐼π‘₯𝑒+𝐼𝑦𝑣+𝐼𝑑 = 0 has the smallest magnitude |𝑉⃗ |? Hint: This can be solved geometrically as was outlined in class by considering the OFCE in 𝑒,𝑣 space.

                                                                                                  𝐼π‘₯𝑒 +𝐼𝑦𝑣+𝐼𝑑 = 0

 

Moving Gaussian Blob (6 pts): A Gaussian blob is observed over time to have brightness
 2 π‘₯ 𝑦 π‘₯ 𝑦 2 𝐼(π‘₯,𝑦,𝑑) = 𝑒−(𝑑 −2(π‘˜1+π‘˜2)𝑑+(π‘˜1+π‘˜2) )

 

What are 𝐼π‘₯, 𝐼𝑦, and 𝐼𝑑? Hint: You should find that these derivatives have a simple form.
The Optical Flow Constraint Equation is 𝐼π‘₯𝑒 +𝐼𝑦𝑣+𝐼𝑑 = 0. Write this out using the results of Part a. and simplify it as much as possible. For example, you should be able to cancel terms that occur in each of 𝐼π‘₯, 𝐼𝑦, and 𝐼𝑑.
 

Quadratic Optical Flow (8 pts): Suppose the image brightness is given by
𝐼(π‘₯,𝑦,𝑑) = 𝐼0 +[(π‘₯−𝑐1𝑑)2 +(𝑦−𝑐2𝑑)2]

What are Ix, Iy, and It? Hint: You should find that these derivatives have a simple form.
 

Express the Optical Flow Constraint Equation 𝐼π‘₯𝑒 +𝐼𝑦𝑣+𝐼𝑑 = 0 in the simplest terms possible for this image sequence.
 

The equation from b. must hold for all x, y, and t. Find a constant solution for u and v that makes this true, that is, such that u and v do not depend on x, y, and t.
 

Iterative Optical Flow(8 pts): We saw in class an iterative method for computing optical flow, where at each iteration, the optical flow 𝑒 is updated according to
                              [             ]new = [πœ†πΌπ‘₯2 +4                 πœ†πΌπ‘₯𝐼𝑦 ]neighbors(π‘₯,𝑦)𝑒old(𝑛)−πœ†πΌπ‘₯𝐼𝑑   

𝑒(π‘₯,𝑦)

                                 π‘£(π‘₯,𝑦)                πœ†πΌπ‘₯𝐼𝑦              πœ†πΌ                       𝑣old(𝑛)−πœ†πΌπ‘¦πΌπ‘‘

                                                                                                                [      π‘›neighbors(π‘₯,𝑦)                                                   ]

Show that this is equivalent to
                 [𝑒 new                                         πœ†πΌπ‘₯𝐼𝑦                         neighbors(π‘₯,𝑦)𝑒old(𝑛)−πœ†πΌπ‘₯𝐼𝑑   

]

                  𝑣                                                         πœ†πΌπ‘₯𝐼𝑦            πœ†πΌ                          π‘£old(𝑛)−πœ†πΌπ‘¦πΌπ‘‘

                                                                                                                                      [      π‘›neighbors(π‘₯,𝑦)                                                   ]

Show that this is equivalent to update equations
                                                          new(π‘₯,𝑦) = 𝑒̅old −          πΌπ‘₯               4(𝐼π‘₯𝑒̅old +𝐼𝑦𝑣̅ old +𝐼𝑑)

𝑒

                                                                                                  𝐼π‘₯2 +𝐼𝑦2 +πœ†                                   

𝐼

                                                      𝑣new(π‘₯,𝑦) = 𝑣̅ old − 𝑦 4(𝐼π‘₯𝑒̅old +𝐼𝑦𝑣̅ old +𝐼𝑑)

𝐼π‘₯2 +𝐼𝑦2 +πœ†

where 𝑒̅old,𝑣̅ old are the averages of the 4 neighbors of 𝑒(π‘₯,𝑦),𝑣(π‘₯,𝑦). Hint: You only need to show this for 𝑒new because 𝑣new follows an identical derivation.

In the case that πœ† = 0, what do the update equations reduce to?

More products