Starting from:

$25

CS549-Homework 4 Solved

Not to turn in, 0 pts) Use OpenCV or Matlab to compute the Sobel edges of an image. In addition, compute the Marr-Hildreth edges (zero-crossings of ∇2π‘”π‘”πœŽπœŽ ∗ 𝑓𝑓) for various values of σ. Try 1, 2, 4, 8, 16. Do you get closed contours?
 

(9 pts) Show that
𝑓𝑓(π‘₯π‘₯βƒ—) = 𝑔𝑔(π‘₯π‘₯βƒ—) ∗ β„Ž(π‘₯π‘₯βƒ—) has Fourier Transform 𝐹𝐹(πœ”πœ”βƒ—) = 𝐺𝐺(πœ”πœ”βƒ—) × π»π»(πœ”πœ”βƒ—). Hint: Write out the
F.T. and change variables.

 

In 1-D 𝑑𝑑𝑓𝑓(π‘₯π‘₯)/𝑑𝑑π‘₯π‘₯ has Fourier Transform π‘—π‘—πœ”πœ”πΉπΉ(πœ”πœ”), assuming that 𝑓𝑓(π‘₯π‘₯) → 0 as π‘₯π‘₯ → ±∞.
Hint: Integrate by parts.

 

In 2-D the Laplacian operator ∇2= 𝑑𝑑π‘₯π‘₯𝑑𝑑22 + 𝑑𝑑𝑦𝑦𝑑𝑑22 has Fourier Transform −|πœ”πœ”βƒ—|2. Hint: Use
𝑒𝑒

Part b. repeatedly and the fact that πœ”πœ”βƒ— =  .

𝑣𝑣

 

(9 pts) Ima Robot proposes an edge detector as follows:
 

Compute the Fourier Transform 𝐹𝐹(πœ”πœ”βƒ—) of image 𝑓𝑓(π‘₯π‘₯βƒ—).

 1 2|πœ”πœ”βƒ—|2

Multiply 𝐹𝐹(πœ”πœ”βƒ—) by 𝐺𝐺1(πœ”πœ”βƒ—) = 𝑒𝑒−2𝜎𝜎1 to form 𝐻𝐻1(πœ”πœ”βƒ—).

 −1 2|πœ”πœ”βƒ—|2

Multiply 𝐹𝐹(πœ”πœ”βƒ—) by 𝐺𝐺2(πœ”πœ”βƒ—) = 𝑒𝑒 2𝜎𝜎2 to form 𝐻𝐻2(πœ”πœ”βƒ—).

 

Compute 𝐻𝐻3(πœ”πœ”βƒ—) = 𝐻𝐻2(πœ”πœ”πœŽπœŽβƒ—2)−−𝐻𝐻𝜎𝜎11(πœ”πœ”βƒ—).

Compute β„Ž3(π‘₯π‘₯βƒ—) as the Inverse Fourier Transform of 𝐻𝐻3(πœ”πœ”βƒ—).

Find zero-crossings of β„Ž3(π‘₯π‘₯βƒ—).

 

Describe how β„Ž3(π‘₯π‘₯βƒ—) can be computed by a single convolution with some kernel 𝑔𝑔(π‘₯π‘₯βƒ—). What is the convolutional kernel 𝑔𝑔(π‘₯π‘₯βƒ—)?
 

If 𝐹𝐹(πœ”πœ”βƒ—) = 1, that is, the image has a “flat” spectrum, sketch 𝐻𝐻3(πœ”πœ”βƒ—). Because 𝐻𝐻3(πœ”πœ”βƒ—) is rotationally symmetric, that is, 𝐻𝐻3(πœ”πœ”βƒ—) = 𝐻𝐻3(𝜌𝜌), where 𝜌𝜌 , you only need to show a slice through 𝐻𝐻3.
 

As 𝜎𝜎2 → 𝜎𝜎1, is this a good edge detector, that is, do zero-crossings of β„Ž3 occur at edges? Why or why not? Hint: Consider 𝐺𝐺(πœ”πœ”βƒ—) as 𝜎𝜎2 → 𝜎𝜎1.
 

(10 pts) Ima Robot proposes the following operators to detect diagonally oriented edges:
                NE                                                                   NW

 

How are these operators related to the Sobel H and V operators?
 

Suggest two different ways in which to combine the NW and NE operators into a single measure of edge strength. What are the relative strengths and weaknesses of each?
Express the NW operator as the convolution of two different 2×2 operators.
 

Show that |NW*I| + |NE*I| = Max(|H*I|,|V*I|)
 

(5 pts) Read Canny’s PAMI article on Computational Edge Detection, available on Canvas.
 

List the 3 criteria that his approach optimizes.
 

Explain the drawback of using the Differences of Boxes edge operator.
 

More products