Starting from:

$25

CS549-Homework 11 Solved

Inexact Match (7 pts): In stereo imaging, if the rays defined by 𝑋𝑋⃗𝐿𝐿 and 𝑋𝑋⃗𝑅𝑅 do not intersect, we can find π‘‹π‘‹βƒ—π‘Šπ‘Š anyway by minimizing an error measure.  One way to do this is to project

π‘‹π‘‹βƒ—π‘Šπ‘Š into the left and right image planes to give 𝑋𝑋⃗𝐿𝐿′ and 𝑋𝑋⃗𝑅𝑅′. The error E is defined as the squared difference between the observed image points 𝑋𝑋⃗𝐿𝐿 and 𝑋𝑋⃗𝑅𝑅 and the projected image points 𝑋𝑋⃗𝐿𝐿′ and 𝑋𝑋⃗𝑅𝑅′.

a. Show that for the simplified parallel optical axis camera geometry used in class where

              𝑓𝑓⃗ βˆ™ 𝐡𝐡⃗ = 0, 𝑅𝑅 = 𝐼𝐼, 𝑇𝑇⃗      π΅π΅βƒ—

𝐸𝐸 ≡ 𝑋𝑋⃗𝐿𝐿′ − 𝑋𝑋⃗𝐿𝐿2 + 𝑋𝑋⃗𝑅𝑅′ − 𝑋𝑋⃗𝑅𝑅2

𝑓𝑓     𝑏𝑏        2                     𝑓𝑓        2                     𝑓𝑓        π‘π‘        2 =  π‘§π‘§π‘Šπ‘Š π‘₯π‘₯π‘Šπ‘Š + 2 − π‘₯π‘₯𝐿𝐿 + 𝑧𝑧 π‘Šπ‘Š π‘¦π‘¦π‘Šπ‘Š − 𝑦𝑦𝐿𝐿 + 𝑧𝑧 π‘Šπ‘Š π‘₯π‘₯π‘Šπ‘Š − 2 − π‘₯π‘₯𝑅𝑅

                                                                                 π‘“𝑓                  2

+ 𝑧𝑧 π‘Šπ‘Š π‘¦π‘¦π‘Šπ‘Š − 𝑦𝑦𝑅𝑅 
b.      By differentiating E with respect to π‘₯π‘₯π‘Šπ‘Š and π‘¦π‘¦π‘Šπ‘Š, show that

π‘₯π‘₯π‘Šπ‘Š = π‘₯π‘₯𝐿𝐿+π‘₯π‘₯𝑅𝑅 𝑧𝑧 π‘Šπ‘Š and π‘¦π‘¦π‘Šπ‘Š = 𝑦𝑦𝐿𝐿+𝑦𝑦𝑅𝑅 𝑧𝑧 π‘Šπ‘Š

                                                                                                 2          π‘“𝑓                                              2           𝑓𝑓

c.       By differentiating E with respect to π‘§π‘§π‘Šπ‘Š and using the results of b., show that

 π‘Šπ‘Š = 𝑓𝑓𝑏𝑏

 π‘§π‘§

βˆ†π‘₯π‘₯

and conclude that

 π‘Šπ‘Š = 𝑋𝑋⃗𝐴𝐴𝐴𝐴𝐴𝐴 𝐡𝐡⃗2

𝑋𝑋⃗
𝐡𝐡⃗ βˆ™ βˆ†βƒ—

2. Reference Image (4 pts): Sometimes we treat one image in a stereo pair as a “reference image” aligned with world coordinates.  The other image and disparity are taken with respect to the reference image.  Suppose that the right image is the reference image.  Then we have

𝑋𝑋⃗𝑅𝑅𝐢𝐢 = π‘‹π‘‹βƒ—π‘Šπ‘Š and 𝑋𝑋⃗𝐿𝐿𝐢𝐢 = π‘‹π‘‹βƒ—π‘Šπ‘Š + 𝐡𝐡⃗

Show that in this formulation, the world point is given by

 π‘Šπ‘Š = 𝑋𝑋⃗𝐴𝐴𝐴𝐴𝐴𝐴 𝐡𝐡⃗2 − 𝐡𝐡⃗

𝑋𝑋⃗
                                                                                                           π΅π΅βƒ— βˆ™ βˆ†βƒ—   2

You may assume that the left and right image rays intersect, although as Problem 1. shows, they don’t have to.

 

3. Inexact Match, Alternative Version (10 pts): Another way to determine distance when 𝑋𝑋⃗𝐿𝐿 and 𝑋𝑋⃗𝑅𝑅 do not intersect is to find the point π‘‹π‘‹βƒ—π‘Šπ‘Š closest to the rays defined by 𝑋𝑋⃗𝐿𝐿 and 𝑋𝑋⃗𝑅𝑅. The left image ray is defined by 

 π‘Šπ‘Š = − 𝐡𝐡⃗ + 𝑙𝑙𝑋𝑋⃗𝐿𝐿, 0 ≤ 𝑙𝑙

𝑋𝑋⃗𝐿𝐿
2

 

The goal is to find points π‘‹π‘‹βƒ—πΏπΏπ‘Šπ‘Š and π‘‹π‘‹βƒ—π‘…π‘…π‘Šπ‘Š on the left and right image rays that are closest to each other; the point equidistant between them is the desired π‘‹π‘‹βƒ—π‘Šπ‘Š. We can find these points by minimizing the following:  

minπ‘‹π‘‹βƒ—πΏπΏπ‘Šπ‘Š − π‘‹π‘‹βƒ—π‘…π‘…π‘Šπ‘Š2

𝑙𝑙,π‘Ÿπ‘Ÿ

Show that the solution is given by

𝑋𝑋⃗𝑅𝑅2𝑋𝑋⃗𝐿𝐿 βˆ™ 𝐡𝐡⃗ − 𝑋𝑋⃗𝐿𝐿 βˆ™ 𝑋𝑋⃗𝑅𝑅𝑋𝑋⃗𝑅𝑅 βˆ™ 𝐡𝐡⃗𝑋𝑋⃗𝐿𝐿 + 𝑋𝑋⃗𝐿𝐿 βˆ™ 𝑋𝑋⃗𝑅𝑅𝑋𝑋⃗𝐿𝐿 βˆ™ 𝐡𝐡⃗ − 𝑋𝑋⃗𝐿𝐿2𝑋𝑋⃗𝑅𝑅 βˆ™ 𝐡𝐡⃗𝑋𝑋⃗𝑅𝑅

1

 

 π‘‹π‘‹βƒ—π‘Šπ‘Š = 2                                        π‘‹π‘‹βƒ—𝐿𝐿2𝑋𝑋⃗𝑅𝑅2 − 𝑋𝑋⃗𝐿𝐿 βˆ™ 𝑋𝑋⃗𝑅𝑅2                                                                                     

More products