Question!1:%
Textbook%Page%144,%Q4.%
In%an%earlier%set%of%exercises%(Textbook%Page%79,%Q34,%or%Homework%2,%Q1),%you%were%asked%to% calculate%one’s%BMI.%Augment%that%program%by%print%out%where%that%BMI%fits%in%the%CDC% standard%weight%status%categories:%
%
%
%
%
Question!2:!
Write%a%program%that%computes%how%much%a%customer%has%to%pay%after%purchasing%two%items.%
The%price%is%calculated%according%to%the%following%rules:%
• Buy%one%get%one%half%off%promotion:%the%lower%price%item%is%half%price.%
• If%the%customer%is%club%card%member,%additional%10%%off.%
• Tax%is%added.%
%
Inputs%to%the%program%include:%
• Two%items’%prices%
• Have%club%card%or%not%(User%enters%‘Y’%or%‘y’%for%“yes”;%‘N’%or%‘n’%for%“no”)%
• Tax%rate%(User%enters%the%percentage%as%a%number;%for%example%they%enter%8.25%if%the%tax% rate%is%8.25%)%
%
Program%displays:%
• Base%price%6%the%price%before%the%discounts%and%taxes%%
• Price%after%discounts%6%the%price%after%the%buy%one%get%one%half%off%promotion%and%the% member’s%discount,%if%applicable%%
• Total%price%–%the%amount%of%money%the%customer%has%to%pay%(after%tax)%printed%with% precision%of%at%most%2%decimal%digits.%
%
Hint:%In%order%to%print%a%number%in%a%specific%precision,%you%can%use%the%round%function%passing% 2%arguments%to%it.%Use%help(round)%to%get%a%brief%explanation%of%this%function,%and%try% playing%with%it,%to%better%understand%what%it%does.%
%
For%example,%an%execution%could%look%like%this:%
Enter%price%of%first%item:%10%
Enter%price%of%second%item:%20%
Does%customer%have%a%club%card?%(Y/N):%y%
Enter%tax%rate,%e.g.%5.5%for%5.5%%tax:%8.25%
Base%price%=%%25.0%
Price%after%discounts%=%%22.5%
Total%price%=%24.36%
%
%
Question!3:!
Write%a%program%that%does%the%following:%
6 Ask%user%to%input%three%floating%point%numbers%a,%b%and%c.%They%are%the%parameters%of%a% quadratic%equation%!!!+!"+!=0%
6 Classify%to%one%of%the%following:%% o ’Infinite%number%of%solutions’%(for%example,%0!!+0!+0=0%has%infinite% number%of%solutions)%
o ’No%solution’%(for%example,%0!!+0!+4=0%has%no%solution)% o ’No%real%solution’%(for%example,%!!+4=0%has%no%real%solutions)% o ’One%real%solution’% o ’Two%real%solutions’%
6 In%cases%there%are%1%or%2%real%solutions,%also%print%the%solutions.%
%
Hint:%if%!≠0%and%there%are%real%solutions%to%the%equation,%you%can%get%these%solutions%using%the% following%formula:%
−!± !!−4!"
!!,! = 2! %
The%number%of%solutions%depends%on%whether%%(b2#$4ac)%is%positive,%zero,%or%negative.%
%
For%example,%an%execution%could%look%like:%
Please%enter%value%of%a:%1%
Please%enter%value%of%b:%4%
Please%enter%value%of%c:%4%
This%equation%has%single%real%solution%x=62.0%
Question!4:!
Write%a%program%that%does%the%following:%
6 Ask%user%to%input%lengths%of%three%sides.%(You%may%assume%that%these%inputs%are%really% the%sides%of%a%triangle.)%
6 Classify%it%into%one%of%the%following:%% o Equilateral%triangle% o Isosceles%right%triangle%
o Isosceles%triangle%that%is%not%a%right%triangle%
o A%triangle%that%is%not%an%isosceles%and%not%an%equilateral%
%
For%example,%an%execution%could%look%like:%
Please%enter%lengths%of%a%triangle’s%sides%
Length%of%the%first%side:%30%
Length%of%the%second%side:%30%
Length%of%the%third%side:%30%
30,%30,%30%form%an%equilateral%triangle.%
%
%
Extra!credit:!
Question!5:!!
Extend%Question%4,%by%also%drawing%the%triangle%using%Turtle%Graphics.%Your%program%should% work%with%any%set%of%inputs,%which%means%no%hardwiring%of%lengths%or%angles.%
Hint:%Use%the%law%of%cosines%(
https://en.wikipedia.org/wiki/Law_of_cosines)%%