$30
Question 1
(p|q| − r)&((−r|q|p)− ((r|q)& − q& − p))
I
N (p ∨ q∨qr) ∧ ((r∧qq∧qp) ∨ ((r ∨ q)∧qq∧qp))
D (p ∨ q∨qr) ∧ (((r∧qq∧qp) ∨ (r ∨ q)) ∧ (((r∧qq∧qp)∨qq)) ∧ (((r∧qq∧qp)∨qp))) D (p ∨ q∨qr) ∧ (((r ∨ r ∨ q) ∧ (qq ∨ r ∨ q) ∧ (qp ∨ r ∨ q)
∧ (r∨qq) ∧ (qq∨qq) ∧ (qp∨qq) ∧ (r∨qp) ∧ (qq∨qp) ∧ (qp∨qp)))
O
1 {p,q,qr}
2 {r,q}
3 {qq,r,q} 4 {qp,r,q}
5 {r,qq}
6 {qq}
7 {qp,qq}
8 {r,qp}
9 {qq,qp}
10 {qp}
Resolution
11 {p,q}
12 {p} 13 {}
Question 2
∃g(Greyhound(g) ∧ ∀r(Rabbit⇒ (r) ⇒ Faster(g,r))) ∀x∀y(Horse(x) ∧ Dog(y) Faster(x,y))
neg conclusion: q(∀x∀r(Horse⇒(x) ∧ Rabbit(r) ⇒ Faster(x,r))) ∀x∀r(Horse(x) ∧ Rabbit(r) Faster(x,r))
Now turn them to clausal form and do the resolution steps.
∀x∀ x,y))
I ∀x∀y(q(( (x) ∧ (y)) ∨ (x,y))
N ∀x∀y(qHorse(x)∨qDog(y) ∨ Faster(x,y))
E qHorse(x)∨qDog(y) ∨ Faster(x,y)
O {qHorse(x),qDog(y),Faster(x,y)}
I ∃g(Greyhound(g) ∧ ∀r(qRabbit(r)⇒∨ Faster(g,r))) ∃g(Greyhound(g) ∧ ∀r(Rabbit(r) Faster(g,r)))
E ∃g(Greyhound(g) ∧ (qRabbit(r) ∨ Faster(g,r)))
A Greyhound(Grey) ∧ (qRabbit(r) ∨ Faster(Grey,r)))
O {Greyhound(Grey)}
{qRabbit(r),Faster(Grey,r)}
Conclusion:
q(∀x∀r(Horse(x) ∧ Rabbit(r) Faster(x,r)))
I q(∀x∀r(q((Horse(x) ∧ Rabbit(⇒r)) ∨ Faster(x,r)))
N q(∀x∀r(qHorse(x)∨qRabbit(r) ∨ Faster(x,r))) N ∃x∃rq(qHorse(x)∨qRabbit(r) ∨ Faster(x,r)))
N ∃x∃r(Horse(x) ∧ Rabbit(r)∧qFaster(x,r))
A Horse(Happy) ∧ Rabbit(Rein)∧qFaster(Happy,Rein)
O {Horse(Happy)}
{Rabbit(Rein)}
{qFaster(Happy,Rein)}
And the backgroud knowledge:
∀g(Greyghound(g) ⇒ Dog(g))
∀x∀y∀z(Faster(x,y) ∧ Faster(y,z) ⇒ Faster(x,z))
∀g(Greyghound(g) Dog(g))
I ∀gqGreyghound(g)⇒∨ Dog(g))
A qGreyghound(g) ∨ Dog(g))
O {qGreyghound(g),Dog(g)}
I x∀y∀z(q(Faster(x,y) ∧ Faster(y,z))⇒∨ Faster(x,z)) ∀x∀y∀z(Faster(x,y) ∧ Faster(y,z) Faster(x,z))
N ∀y∀z(qFaster(x,y)∨qFaster(y,z) ∨ Faster(x,z))
A qFaster(x,y)∨qFaster(y,z) ∨ Faster(x,z)
O {qFaster(x,y),qFaster(y,z),Faster(x,z)}
Resolution:
1 {qHorse(x1),qDog(y1),Faster(x1,y1)}
2 {Greyhound(Grey)}
3 {qRabbit(r1),Faster(Grey,r1)}
4 {qGreyghound(g1),Dog(g1)}
5 {qFaster(x2,y2),qFaster(y2,z1),Faster(x2,z1)} 6 {Horse(Happy)}
7
{Rabbit(Rein)}
8
{qFaster(Happy,Rein)}
9
{Dog(Grey)}
2,4
10
{Faster(Grey,Rein)}
3,7
11
{qHorse(x1),Faster(x1,Grey)}
1,9
12
{Faster(Happy,Grey)}
6,11
13
{qFaster(Grey,z1),Faster(Happy,z1)}
5,12
14
{Faster(Happy,Rein)}
10,13
15
{}
8,14
Question 3
q∃y(Bird(y) ∧ Large(y⇒) ∧ LiveonHon(y)) ∀x(Hummingbird(x) Richcolor(x))
∀y(Bird(y)∧qLiveonHon(y) qRichcolor(y))
∀x(Hummingbird(x) ⇒⇒ Bird⇒(x)) (Background) ∀x(Hummingbird(x) qLarge(x)) (Conlusion)
Prover 9:
1(allx(hummingbird(x)− richcolor(x)))[assumption].
2(allx − (bird(x)&large(x)&liveonhon(x)))[assumption].
3(allx(bird(x)& − liveonhon(x)− −richcolor(x)))[assumption].
4(allx(hummingbird(x)− bird(x)))[assumption].
5(allx(hummingbird(x)− −large(x)))[goal].
6hummingbird(c1).[deny(5)].
7 − hummingbird(x)|richcolor(x).[clausify(1)].
8 − hummingbird(x)|bird(x).[clausify(4)].
9bird(c1).[resolve(6,a,8,a)].
10 − bird(x)| − large(x)| − liveonhon(x).[clausify(2)].
11 − bird(x)|liveonhon(x)| − richcolor(x).[clausify(3)].
12 − large(c1)| − liveonhon(c1).[resolve(9,a,10,a)].
13large(c1).[deny(5)].
14liveonhon(c1)| − richcolor(c1).[resolve(9,a,11,a)].
15richcolor(c1).[resolve(6,a,7,a)].
16liveonhon(c1).[resolve(14,b,15,a)].
17 − liveonhon(c1).[resolve(12,a,13,a)].
18$F.[resolve(16,a,17,a)].
Question 4
mg = My gardener; wl = worth listening to on military subjects; ar = able to remember the battle of waterloo; old=very old
∃x(person(x) ∧ mg(x) ∧ wl(x)).
∀y((person(y) ∧ ar(y)) old(y)).
∀z((person(z) ∧ wl(z)) ⇒ar(z)).
∃m(person(x) ∧ mg(m)⇒∧ old(m)).(conclusion)
Prover 9:
1(existsx(person(x)&mg(x)&wl(x)))[assumption].
2(allx(person(x)&ar(x)− old(x)))[assumption].
3(allx(person(x)&wl(x)− ar(x)))[assumption].
4(existsm(person(m)&mg(m)&old(m)))[goal].
5 − person(x)| − ar(x)|old(x).[clausify(2)].
6person(c1).[clausify(1)].
7 − person(x)| − wl(x)|ar(x).[clausify(3)].
8 − person(x)| − mg(x)| − old(x).[deny(4)].
9 − mg(c1)| − old(c1).[resolve(8,a,6,a)].
10mg(c1).[clausify(1)].
11 − wl(c1)|ar(c1).[resolve(7,a,6,a)].
12wl(c1).[clausify(1)].
13ar(c1).[resolve(11,a,12,a)].
14 − ar(c1)|old(c1).[resolve(5,a,6,a)].
15old(c1).[resolve(13,a,14,a)].
16 − old(c1).[resolve(9,a,10,a)].
17$F.[resolve(15,a,16,a)].
Question 5
P(P13) = P(P22) = P(P31) = 0.01
P(p13|b12,b21) = αX22 X(P(b12|p13,p22) · P(b21|p22,p31) · P(p13) · P(p22) · P(p31))
p p31
= α[P(b12|p13,p22) · P(b21|p22,p31) · P(p13) · P(p22) · P(p31)+
P(b12|p13,qp22) · P(b21|qp22,p31) · P(p13) · P(qp22) · P(p31)+
P(b12|p13,p22) · P(b21|p22,qp31) · P(p13) · P(p22) · P(qp31)+
P(b12p13,p22) · P(b21|qp22,qp31) · P(p13) · P(qp22) · P(qp31)]
= α[1 · 1 · 0.01 · 0.01 · 0.01 + 1 · 1 · 0.01 · 0.99 · 0.01+
1 · 1 · 0.01 · 0.01 · 0.99 + 0] = α(0.000001 + 0.000099 + 0.000099) = 0.000199α
P(qp13|b12,b21) = αX22 X(P(b12|qp13,p22) · P(b21|p22,p31) · P(qp13) · P(p22) · P(p31))
p p31
= α[P(b12|qp13,p22) · P(b21|p22,p31) · P(qp13) · P(p22) · P(p31)+
P(b12|qp13,qp22) · P(b21|qp22,p31) · P(qp13) · P(qp22) · P(p31)+
P(b12|qp13,p22) · P(b21|p22,qp31) · P(qp13) · P(p22) · P(qp31)+
P(b12|qp13,p22) · P(b21|qp22,qp31) · P(qp13) · P(qp22) · P(qp31)]
= α[1 · 1 · 0.99 · 0.01 · 0.01 + 0 + 1 · 1 · 0.99 · 0.01 · 0.99 + 0)
= α(0.000099 + 0.009801) = 0.0099α
α = 1/(0.000199 + 0.0099) = 99.02
P(p13|b12,b21) = 0.0197
P(qp13|b12,b21) = 0.9803
P(p31|b12,b21) = αX13 X(P(b12|p13,p22) · P(b21|p22,p31) · P(p13) · P(p22) · P(p31))
p p22
= 0.0197
P(qp31|b12,b21) = αX13 X(P(b12|p13,p22) · P(b21|p22,qp31) · P(p13) · P(p22) · P(qp31))
p p22
= 0.9803
P(p22|b12,b21) = αX13 X(P(b12|p13,p22) · P(b21|p22,p31) · P(p13) · P(p22) · P(p31))
p p31
= α[P(b12|p13,p22) · P(b21|p22,p31) · P(p13) · P(p22) · P(p31)+
P(b12|qp13,p22) · P(b21|p22,p31) · P(qp13) · P(p22) · P(p31)+
P(b12|p13,p22) · P(b21|p22,qp31) · P(p13) · P(p22) · P(qp31)+
P(b12|qp13,p22) · P(b21|p22,qp31) · P(qp13) · P(p22) · P(qp31)]
= α(1 · 1 · 0.01 · 0.01 · 0.01 + 1 · 1 · 0.01 · 0.01 · 0.99
+ 1 · 1 · 0.01 · 0.01 · 0.99 + 1 · 1 · 0.99 · 0.01 · 0.99)
= 0.01α
P(qp22|b12,b21) = αX13 X(P(b12|p13,qp22) · P(b21|qp22,p31) · P(p13) · P(qp22) · P(p31))
p p31
= α[P(b12|p13,qp22) · P(b21|qp22,p31) · P(p13) · P(qp22) · P(p31)+
P(b12|qp13,qp22) · P(b21|qp22,p31) · P(qp13) · P(qp22) · P(p31)+
P(b12|p13,qp22) · P(b21|qp22,qp31) · P(p13) · P(qp22) · P(qp31)+
P(b12|qp13,qp22) · P(b21|qp22,qp31) · P(qp13) · P(qp22) · P(qp31)]
= α(1 · 1 · 0.01 · 0.99 · 0.01 + 0 + 0 + 0) = 0.000099α
α = 1/(0.01 + 0.000099) = 99.02
P(p22|b12,b21) = 0.9902
P(qp22|b12,b21) = 0.0098
Going to [2,2] is almost certain death. So, a probabilistic agent will never choose to go to [2,2]. On the other hand, to a logical agent, squares [1,3], [2,2], [3,1] look the same. So, the logical agent would choose either one with equal chance (1/3). By doing that, the agent will die with a chance of about 1/3.
Question 6
1
2
3
P(happy|party,smart,qcreative)
= αXXXX [P(happy,mac,success,hw,project,party,smart,qcreative)]
mac project hw success
= αXXXX [P(happy|mac,success,party) · P(mac|qcreative,smart)·
mac project hw success
P(success|project,hw) · P(hw|party,smart) · P(project|qcreative,smart)·
P(party) · P(smart) · P(qcreative)]
= αP(party) · P(smart) · P(qcreative) · X ·P(project|qcreative,smart)
project
X
X P(happy|mac,success,party) · P(mac|qcreative,smart)·
mac hw success
P(success|project,hw) · P(hw|party,smart)
= αP(party) · P(smart) · P(qcreative) · X ·P(project|qcreative,smart)
project
[P(happy|mac,success,party) · P(mac|qcreative,smart)·
P(success|project,hw) · P(hw|party,smart)+
P(happy|qmac,success,party) · P(qmac|qcreative,smart)·
P(success|project,hw) · P(hw|party,smart)+
P(happy|mac,success,party) · P(mac|qcreative,smart)·
P(success|project,qhw) · P(qhw|party,smart)+
P(happy|mac,qsuccess,party) · P(mac|qcreative,smart)·
P(qsuccess|project,hw) · P(hw|party,smart)+
P(happy|qmac,qsuccess,party) · P(qmac|qcreative,smart)·
P(qsuccess|project,hw) · P(hw|party,smart)+
P(happy|qmac,success,party) · P(qmac|qcreative,smart)·
P(success|project,qhw) · P(qhw|party,smart)+
P(happy|mac,qsuccess,party) · P(mac|qcreative,smart)·
P(qsuccess|project,qhw) · P(qhw|party,smart)+
P(happy|qmac,qsuccess,party) · P(qmac|qcreative,smart)·
P(qsuccess|project,qhw) · P(qhw|party,smart)]
= 0.692
P(qhappy|party,smart,qcreative)
= αXXXX [P(qhappy,mac,success,hw,project,party,smart,qcreative)]
mac project hw success
= αXXXX [P(qhappy|mac,success,party) · P(mac|qcreative,smart)·
mac project hw success
P(success|project,hw) · P(hw|party,smart) · P(project|qcreative,smart)·
P(party) · P(smart) · P(qcreative)]
= αP(party) · P(smart) · P(qcreative) · X ·P(project|qcreative,smart)
project
X
X P(qhappy|mac,success,party) · P(mac|qcreative,smart)·
mac hw success
P(success|project,hw) · P(hw|party,smart)
= αP(party) · P(smart) · P(qcreative) · X ·P(project|qcreative,smart)
project
[P(qhappy|mac,success,party) · P(mac|qcreative,smart)·
P(success|project,hw) · P(hw|party,smart)+
P(qhappy|qmac,success,party) · P(qmac|qcreative,smart)·
P(success|project,hw) · P(hw|party,smart)+
P(qhappy|mac,success,party) · P(mac|qcreative,smart)·
P(success|project,qhw) · P(qhw|party,smart)+
P(qhappy|mac,qsuccess,party) · P(mac|qcreative,smart)·
P(qsuccess|project,hw) · P(hw|party,smart)+
P(qhappy|qmac,qsuccess,party) · P(qmac|qcreative,smart)·
P(qsuccess|project,hw) · P(hw|party,smart)+
P(qhappy|qmac,success,party) · P(qmac|qcreative,smart)·
P(success|project,qhw) · P(qhw|party,smart)+
P(qhappy|mac,qsuccess,party) · P(mac|qcreative,smart)·
P(qsuccess|project,qhw) · P(qhw|party,smart)+
P(qhappy|qmac,qsuccess,party) · P(qmac|qcreative,smart)·
P(qsuccess|project,qhw) · P(qhw|party,smart)]
= 0.308
4
P(happy|smart,creative) = 0.58156
5
P(happy|qparty,hw,project) = 0.32045
6
P(happy|mac) = 0.56272
7
P(party|smart) = 0.6022
8
P(party|smart,happy) = 0.79265