Starting from:

$25

CPTS553- Graph Theory: Assignment 8 Solved

There’s only one question, with four parts. 

Let 𝐺 be a graph having Laplacian matrix

 

3

 −1

 −1

 

 −1

𝐿 = 0

 0

 0

 0

 0

[ 0

 
−1

3

0

−1

−1

0

0

0

0

0
−1

0

2

0

0

0

0

−1

0

0
−1

−1

0

4

−1

−1

0

0

0

0
0

−1 0

−1

3

0

−1

0

0

0
0

0

0

−1

0

4

0

−1

−1

−1
0

0

0

0

−1

0

2

0

0

−1
0

0

−1

0

0

−1

0

3

−1

0
0

0

0

0

0

−1 0

−1 3

−1
0

0 0 

 



0  

−1 −1 



−1 

3 ]
Recall that the eigenvalues of 𝐿 will take the form

  

We will associate with each eigenvalue πœ†π‘– its corresponding eigenvector 𝐯𝑖.  For instance,  

1

 1 

 1 

  

 1 

𝐯1 =  11  ;  πœ†1 = 0.

 1 

 1 

 1 

[1]

 

A.    Use a matrix calculator to find πœ†2 and πœ†3 together with eigenvectors 𝐯2 and 𝐯3.  You’re on the right track if your values of πœ†2 and πœ†3 are about 0.875 and 1, respectively.  Also, check that the entries of 𝐯2 and 𝐯3 sum to 0 (this

is a consequence of the eigenvectors corresponding to different eigenvalues of 𝐿 being orthogonal.)

 

B.     Let  

 1

                                                                𝐱                             and 𝐲 =   𝐯 ;

these vectors 𝐱 and 𝐲 are unit vectors.   

Letting π‘₯𝑖 and 𝑦𝑖 be the π‘–π‘‘β„Ž coordinates of 𝐱 and 𝐲, respectively, plot the points

(π‘₯1,𝑦1),(π‘₯2,𝑦2),…,(π‘₯10,𝑦10)

in ℝ2 and for each edge 𝑖𝑗 of 𝐺, draw the segment joining (π‘₯𝑖,𝑦𝑖) to

(π‘₯𝑗,𝑦𝑗).

The result should be a “nice” drawing of 𝐺 in the sense that adjacent vertices are drawn close together.

C.     Do the same process in part A to find πœ†9 and πœ†10 along with corresponding eigenvectors 𝐯9 and 𝐯10.  You should expect πœ†9 and πœ†10 to be about 5 and 5.76, respectively.

 

D.    Repeat the process in part B where

 

                                                                                 1                                       1

                                                             π± =   𝐯 and 𝐲 =   𝐯 .

This time, the resulting drawing should have adjacent vertices drawn far apart and so vertices that are drawn close together could be assigned the same color in a graph coloring.  This should give you an indication of the chromatic number of 𝐺.  What is this number?

More products