Starting from:

$25

COSC4320-Assignment 3 Solved

1.     Consider the following iterative map (a 0, b 0)

 

π‘₯𝑑 = π‘₯𝑑−1 + π‘Ž ∗ 𝑠𝑖𝑛( 𝑏 π‘₯𝑑−1 )

 

Conduct linear stability analysis to determine whether this model is stable at its equilibrium point

π‘₯π‘’π‘ž = 0

 

 

2.     A two dimensional difference equation model is given

 

π‘₯𝑑 = π‘₯𝑑−1 + 2 π‘₯𝑑−1 (1 − π‘₯𝑑−1 ) − π‘₯𝑑−1 𝑦𝑑−1  

 

𝑦𝑑 = 𝑦𝑑−1 + 2 𝑦𝑑−1 (1 − 𝑦𝑑−1 ) − π‘₯𝑑−1 𝑦𝑑−1  
 

1.     Find all equilibrium points

2.     Calculate the Jacobian matrix at the equilibrium point where x 0 and y 0

3.     Calculate the Eigenvalues of the matrix obtained

4.     Determine whether the equilibrium point is stable, unstable or Lyapunov stable

More products