Starting from:

$25

COSC4320-Assignment 3 Solved

1.     Consider the following iterative map (a 0, b 0)

 

π‘₯𝑑 = π‘₯π‘‘βˆ’1 + π‘Ž βˆ— 𝑠𝑖𝑛( 𝑏 π‘₯π‘‘βˆ’1 )

 

Conduct linear stability analysis to determine whether this model is stable at its equilibrium point

π‘₯π‘’π‘ž = 0

 

 

2.     A two dimensional difference equation model is given

 

π‘₯𝑑 = π‘₯π‘‘βˆ’1 + 2 π‘₯π‘‘βˆ’1 (1 βˆ’ π‘₯π‘‘βˆ’1 ) βˆ’ π‘₯π‘‘βˆ’1 π‘¦π‘‘βˆ’1  

 

𝑦𝑑 = π‘¦π‘‘βˆ’1 + 2 π‘¦π‘‘βˆ’1 (1 βˆ’ π‘¦π‘‘βˆ’1 ) βˆ’ π‘₯π‘‘βˆ’1 π‘¦π‘‘βˆ’1  
 

1.     Find all equilibrium points

2.     Calculate the Jacobian matrix at the equilibrium point where x 0 and y 0

3.     Calculate the Eigenvalues of the matrix obtained

4.     Determine whether the equilibrium point is stable, unstable or Lyapunov stable

More products