Starting from:

$25

CMSC401 Assignment 4-Minimum Cost Rod Cutting Solved

Minimum Cost Rod Cutting
•        You are given a rod that is N inches long and a set of M cutting points on the rod.

•        You will need to cut the rod from these M points. 

•        You can perform the cuts in any order of these points. 

•        After a cut, rod gets divided into two smaller subrods.

•        The cost of making a cut is the length of the current sub-rod in which you are making a cut.

•        Your goal is to minimize the total cost of cutting.

•        Output will show only the minimum cost. 

Assignment 4
•         Write a program cmsc401.java that reads the size of the rod and cutting points in the format below:

•         The size of the rod, N, in the first line. N>=2, N<=100        104

•         The number of cutting points, M, in the second line. M>=1, M<=N-1    1

•         The location of each of M distinct cutting points (will be >0 and <N) 5 – Only integer values      7

9

                                           0         1         2           3         4         5          6         7           8         9        10

 

Cutting points

Example
                 Input in correct format       Correct output

23

10

4

                            1             0         1         2           3         4         5          6        7                 8                                         9        10

 5

7

9

Order                     Cost

1)    Cutting at 5:      10

2)    Cutting at 1:      5 3) Cutting at 7:   5

4) Cutting at 9:                   3

---------------------------------

Total Cost:                        23

Cutting points

An order of cutting points that gives the min 

cost is 5,1,7,9 (there are also others giving 

the same minimum)

Hint
• Define the problem in terms of cutting the rod from one point to another one
– C(i,j) = cost of cutting the rod from point i to point j

•        Find the recursive formula

•        Apply a dynamic programming method

•        Target O(M3) complexity

More products