$24.99
Mazes give Pacman the blues, So teach him to search.
Introduction
In this project, your Pacman agent will find paths through his maze world, both to reach a particular location and to collect food efficiently. You will build general search algorithms and apply them to Pacman scenarios.
As in Project 0, this project includes an autograder for you to grade your answers on your machine. This can be run with the command:
See the autograder tutorial in Project 0 for more information about using the autograder.
The code for this project consists of several Python files, some of which you will need to read and understand in order to complete the assignment, and some of which you can ignore. You can download all the code and supporting files as a zip archive.
Files you'll edit:
search.py
Where all of your search algorithms will reside.
searchAgents.py
Where all of your search-based agents will reside.
Files you might want to look at:
pacman.py
The main file that runs Pacman games. This file describes a Pacman GameState type, which you use in this project.
game.py
The logic behind how the Pacman world works. This file describes several supporting types like AgentState, Agent, Direction, and Grid.
util.py
Useful data structures for implementing search algorithms.
Supporting files you can ignore:
graphicsDisplay.py
Graphics for Pacman
graphicsUtils.py
Support for Pacman graphics
textDisplay.py
ASCII graphics for Pacman
ghostAgents.py
Agents to control ghosts
keyboardAgents.py
Keyboard interfaces to control Pacman
layout.py
Code for reading layout files and storing their contents
autograder.py
Project autograder
testParser.py
Parses autograder test and solution files
testClasses.py
General autograding test classes
test_cases/
Directory containing the test cases for each question
searchTestClasses.py
Project 1 specific autograding test classes
Files to Edit and Submit: You will fill in portions of search.py and searchAgents.py during the assignment. Once you have completed the assignment, you will submit a token generated by submission_autograder.py . Please do not change the other files in this distribution or submit any of our
original files other than these files.
Discussion: Please be careful not to post spoilers.
Welcome to Pacman
After downloading the code (search.zip), unzipping it, and changing to the directory, you should be able to play a game of Pacman by typing the following at the command line:
Pacman lives in a shiny blue world of twisting corridors and tasty round treats. Navigating this world efficiently will be Pacman’s first step in mastering his domain.
But, things get ugly for this agent when turning is required:
If Pacman gets stuck, you can exit the game by typing CTRL-c into your terminal.
Question 1 (3 points): Finding a Fixed Food Dot using Depth First Search
In searchAgents.py , you’ll find a fully implemented SearchAgent , which plans out a path through
Pacman’s world and then executes that path step-by-step. The search algorithms for formulating a plan are not implemented – that’s your job.
Important note: All of your search functions need to return a list of actions that will lead the agent from the start to the goal. These actions all have to be legal moves (valid directions, no moving through walls).
Important note: Make sure to use the Stack , Queue and PriorityQueue data structures provided to you in util.py ! These data structure implementations have particular properties which are required for compatibility with the autograder.
Hint: Each algorithm is very similar. Algorithms for DFS, BFS, UCS, and A* differ only in the details of how the fringe is managed. So, concentrate on getting DFS right and the rest should be relatively straightforward. Indeed, one possible implementation requires only a single generic search method which is configured with an algorithmspecific queuing strategy. (Your implementation need not be of this form to receive full credit).
Implement the depth-first search (DFS) algorithm in the depthFirstSearch function in search.py . To make your algorithm complete, write the graph search version of DFS, which avoids expanding any already visited states.
Your code should quickly find a solution for:
The Pacman board will show an overlay of the states explored, and the order in which they were explored (brighter red means earlier exploration). Is the exploration order what you would have expected? Does Pacman actually go to all the explored squares on his way to the goal?
Hint: If you use a Stack as your data structure, the solution found by your DFS algorithm for mediumMaze should have a length of 130 (provided you push successors onto the fringe in the order provided by getSuccessors; you might get 246 if you push them in the reverse order). Is this a least cost solution? If not, think about what depth-first search is doing wrong.
Question 2 (3 points): Breadth First Search
Implement the breadth-first search (BFS) algorithm in the breadthFirstSearch function in search.py . Again, write a graph search algorithm that avoids expanding any already visited states. Test your code the same way you did for depth-first search.
Does BFS find a least cost solution? If not, check your implementation.
Hint: If Pacman moves too slowly for you, try the option --frameTime 0 .
Note: If you’ve written your search code generically, your code should work equally well for the eight-puzzle search problem without any changes.
Question 3 (3 points): Varying the Cost Function
While BFS will find a fewest-actions path to the goal, we might want to find paths that are “best” in other senses.
Consider mediumDottedMaze and mediumScaryMaze .
By changing the cost function, we can encourage Pacman to find different paths. For example, we can charge more for dangerous steps in ghost-ridden areas or less for steps in food-rich areas, and a rational Pacman agent should adjust its behavior in response.
Question 4 (3 points): A* search
Implement A* graph search in the empty function aStarSearch in search.py . A* takes a heuristic function as an argument. Heuristics take two arguments: a state in the search problem (the main argument), and the problem itself (for reference information). The nullHeuristic heuristic function in search.py is a trivial example.
You can test your A* implementation on the original problem of finding a path through a maze to a fixed position
Question 5 (3 points): Finding All the Corners
The real power of A* will only be apparent with a more challenging search problem. Now, it’s time to formulate a new problem and design a heuristic for it.
In corner mazes, there are four dots, one in each corner. Our new search problem is to find the shortest path through the maze that touches all four corners (whether the maze actually has food there or not). Note that for some mazes like tinyCorners , the shortest path does not always go to the closest food first! Hint: the shortest path through tinyCorners takes 28 steps.
Note: Make sure to complete Question 2 before working on Question 5, because Question 5 builds upon your answer for Question 2.
Implement the CornersProblem search problem in searchAgents.py . You will need to choose a state representation that encodes all the information necessary to detect whether all four corners have been reached.
Now, your search agent should solve:
To receive full credit, you need to define an abstract state representation that does not encode irrelevant information (like the position of ghosts, where extra food is, etc.). In particular, do not use a Pacman GameState as a search state. Your code will be very, very slow if you do (and also wrong).
Hint: The only parts of the game state you need to reference in your implementation are the starting Pacman position and the location of the four corners.
Our implementation of breadthFirstSearch expands just under 2000 search nodes on
mediumCorners . However, heuristics (used with A* search) can reduce the amount of searching required.
Question 6 (3 points): Corners Problem: Heuristic
Note: Make sure to complete Question 4 before working on Question 6, because Question 6 builds upon your answer for Question 4.
Admissibility vs. Consistency: Remember, heuristics are just functions that take search states and return numbers that estimate the cost to a nearest goal. More effective heuristics will return values closer to the actual goal costs. To be admissible, the heuristic values must be lower bounds on the actual shortest path cost to the nearest goal (and non-negative). To be consistent, it must additionally hold that if an action has cost c, then taking that action can only cause a drop in heuristic of at most c.
Remember that admissibility isn’t enough to guarantee correctness in graph search – you need the stronger condition of consistency. However, admissible heuristics are usually also consistent, especially if they are derived from problem relaxations. Therefore it is usually easiest to start out by brainstorming admissible heuristics. Once you have an admissible heuristic that works well, you can check whether it is indeed consistent, too. The only way to guarantee consistency is with a proof. However, inconsistency can often be detected by verifying that for each node you expand, its successor nodes are equal or higher in in f-value. Moreover, if UCS and A* ever return paths of different lengths, your heuristic is inconsistent. This stuff is tricky!
Non-Trivial Heuristics: The trivial heuristics are the ones that return zero everywhere (UCS) and the heuristic which computes the true completion cost. The former won’t save you any time, while the latter will timeout the autograder. You want a heuristic which reduces total compute time, though for this assignment the autograder will only check node counts (aside from enforcing a reasonable time limit).
Grading: Your heuristic must be a non-trivial non-negative consistent heuristic to receive any points. Make sure that your heuristic returns 0 at every goal state and never returns a negative value. Depending on how few nodes your heuristic expands, you’ll be graded:
Number of nodes expanded Grade
more than 2000 0/3
at most 2000 1/3
at most 1600 2/3
at most 1200 3/3
Remember: If your heuristic is inconsistent, you will receive no credit, so be careful!
Question 7 (4 points): Eating All The Dots
Now we’ll solve a hard search problem: eating all the Pacman food in as few steps as possible. For this, we’ll need a new search problem definition which formalizes the food-clearing problem: FoodSearchProblem in
searchAgents.py (implemented for you). A solution is defined to be a path that collects all of the food in
the Pacman world. For the present project, solutions do not take into account any ghosts or power pellets; solutions only depend on the placement of walls, regular food and Pacman. (Of course ghosts can ruin the execution of a solution! We’ll get to that in the next project.) If you have written your general search methods correctly, A* with a null heuristic (equivalent to uniform-cost search) should quickly find an optimal solution to testSearch with no code change on your part (total cost of 7).
implementation takes 2.5 seconds to find a path of length 27 after expanding 5057 search nodes.
Note: Make sure to complete Question 4 before working on Question 7, because Question 7 builds upon your answer for Question 4.
Our UCS agent finds the optimal solution in about 13 seconds, exploring over 16,000 nodes.
Any non-trivial non-negative consistent heuristic will receive 1 point. Make sure that your heuristic returns 0 at every goal state and never returns a negative value. Depending on how few nodes your heuristic expands, you’ll get additional points:
Number of nodes expanded Grade
more than 15000 1/4
at most 15000 2/4
at most 12000 3/4
at most 9000 4/4 (full credit; medium)
at most 7000 5/4 (optional extra credit; hard)
Remember: If your heuristic is inconsistent, you will receive no credit, so be careful! Can you solve mediumSearch in a short time? If so, we’re either very, very impressed, or your heuristic is inconsistent.
Question 8 (3 points): Suboptimal Search
Sometimes, even with A* and a good heuristic, finding the optimal path through all the dots is hard. In these cases, we’d still like to find a reasonably good path, quickly. In this section, you’ll write an agent that always greedily eats the closest dot. ClosestDotSearchAgent is implemented for you in searchAgents.py , but it’s missing a key function that finds a path to the closest dot.
Implement the function findPathToClosestDot in searchAgents.py . Our agent solves this maze (suboptimally!) in under a second with a path cost of 350:
Copy
python pacman.py -l bigSearch -p ClosestDotSearchAgent -z .5
Hint: The quickest way to complete findPathToClosestDot is to fill in the AnyFoodSearchProblem , which is missing its goal test. Then, solve that problem with an appropriate search function. The solution should be very short!
Your ClosestDotSearchAgent won’t always find the shortest possible path through the maze. Make sure you understand why and try to come up with a small example where repeatedly going to the closest dot does not result in finding the shortest path for eating all the dots.
Submission
In order to submit your project, run python submission_autograder.py and submit the generated token file search.token to the Project 1 assignment on Gradescope.