Starting from:

$25

CH08-320201-HOMEWORK5 Solved

HOMEWORK5

ALGORITHMS AND DATA STRUCTURES (CH08-320201)

Problem 1: Quicksort                                                                                                                                        (8+5+2=15 points)

(a)    Implement a modified version of the Quicksort algorithm, where the sequence is always split into three subsequences by simultaneously using the first two elements as pivots.

(b)    Derive the best-case and worst-case running time for the modified Quicksort in (a).

(c)     Implement a modified version of the Randomized Quicksort algorithm, where the sequence is always split into three subsequences by simultaneously using two random elements as pivots.

Problem 2: Randomized Quicksort                                                                                                                    (6+4=10 points))

To formally complete the proof of the expected time complexity E[T(n)] for the Randomized Quicksort algorithm when applied to an input sequence of length n, provide the following steps:

(a)    Show by induction that

 

(b)    Show by induction that

E[T(n)] ≥cnlgn

for a constant c> 0.

Problem 3: Decision Trees.                                                                                                                                              (4 points)

Show that lgn! = Θ(nlgn) without using Stirling’s formula.


More products