Starting from:

$25

CFRM405-Homework 2 Solved

 

CFRM 405: Mathematical Methods for Quantitative Finance

 

Solve the exercises by hand.

1. Let K, T, σ, and r be positive constants and let
Homework 2
 

where . Compute g0(x).

 Z x

2.    Letso that Φ(x) =  φ(u)du            (i.e., the Φ(x) in Black-Scholes).

−∞

(a)     For x > 0, show that φ(−x) = φ(x).

(b)    Given that lim Φ(x) = 1, use the properties of the integral as well as a substitution

x→∞ to show that Φ(−x) = 1 − Φ(x)        (again, assuming x > 0).

3.    (a) Under what condition does the following hold?

 

(b) Evaluate the double integral

                                                                                                     ZZ       2
ey dA

D

where D = {(x,y) : 0 ≤ y ≤ 1, 0 ≤ x ≤ y}.

4.    (a) Transform the double integral

 

into an integral of u and v using the change of variables

                                                                                  u = x + y                   v = x − y

and call the domain in the uv plane S.

(b)    Let D be the trapezoidal region with vertices (1,0), (2,0), (0,−2) and (0,−1). Find the corresponding region S in the uv plane by evaluating the transformation at the vertices of D and connecting the dots. Sketch both regions.

(c)     Compute the integral found in part (a) over the domain S from part (b).

5.    (a) Let D = {(x,y) : 1 ≤ x2 + y2 ≤ 9, y ≥ 0}. Compute the integral

ZZ     px2 + y2 dxdy

D

by changing to polar coordinates. Sketch the domains of integration in both the xy and rθ (that means r on one axis and θ on the other) planes.

(b)    Compute the integral

where 

More products