$30
Design a hardwire-control unit for the following architecture. Use the structure that you have designed in Project2.
INSTRUCTION FORMAT
There are two types of instructions as described below.
(1) Instructions with address reference has the format shown in Figure 1:
• The OPCODE is a 5-bit field (See Table 1 for the definition).
• The REGSEL is a 2-bit field (See left side of Table 2 for the definition).
• The ADDRESSING MODE is a 1-bit field (See Table 3 for the definition).
• The ADDRESS is 8 bits
OPCODE
REGSEL
ADDRESSING MODE
ADDRESS
Figure 1: Instructions with an address reference
(2) Instructions without address reference has the format shown in Figure 2:
• The OPCODE is a 5-bit field (See Table 1 for the definition).
• DESTREG is a 3-bit field which specifies the destination register (See right side of Table 2 for the definition).
• SRCREG1 is a 3-bit field which specifies the first source register (See right side of Table 2 for the definition).
• SRCREG2 is a 3-bit field which specifies the second source register (See right side of Table 2 for the definition).
OPCODE
DESTREG
SRCREG1
SRCREG2
Figure 2: Instructions without an address reference
Table 1: OPCODE field and SYMBols for opertions and their descriptions
Table 2:REGSEL (Left) and DESTREG/SRCREG1/SRCREG2 (Right) select the register of interest for a particular instruction
Table 3: Addressing modes
EXAMPLE
The code given below adds data that are stored at M[A0]+M[A1]+M[A2]+M[A3]+M[A4] and stores the total at M[A5]. It is written as a loop that iterates 5 times.
You have to determine the binary code, write it into memory, and execute all these instructions.
ORG 0x20 # Write the program starting from the address 0x20
LD R0 IM 0x05 # R0 is used for iteration number
LD R1 IM 0x00 # R1 is used to store total
LD R2 IM 0xA0
MOV AR R2 # AR is used to track data adrress: starts from 0xA0
LABEL: LD R2 D # R2 <- M[AR] (AR = 0xA0 to 0xA4)
INC AR AR # AR <- AR + 1 (Next Data)
ADD R1 R1 R2
# R1 <- R1 + R2 (Total = Total + M[AR])
DEC R0 R0
# R0 <- R0 – 1 (Decrement Iteration Counter)
BNE IM LABEL
# Go back to LABEL if Z=0 (Itertaion Counter 0)
INC AR AR
# AR <- AR + 1 (Total will be written to 0xA5)
ST R1 D
# M[AR] <- R1 (Store Total at 0xA5)